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Abstract 

Early ecological theory predicts that complex ecological networks are unstable 

and are unlikely to persist, despite many empirical studies of such complexity in 

nature. This inconsistency has fascinated ecologists for decades. To resolve the 

 complexity-stability debate, coupling population dynamics and trait dynamics is 

considered to be an important way to understand the long-term stability of ecological 

community assemblages. However, we still do not know how eco-evolutionary feed-

backs affect the relationship between complexity and stability in ecologically realis-

tic networks with both antagonistic and mutualistic interactions. Here, we explored 

an adaptive network model to evaluate how the evolution of foraging preference 

to determine the relationship between network complexity (i.e., connectance) and 

stability (i.e., community persistence at steady state) in mutualist-exploiter-predator 

communities (MEST). Our theoretical results showed: (i) adaptive foraging of the 

top predator contributes to the stability of mutualism and intermediate intensity of 

foraging adaptations can lead to chaotic dynamics in a four-species MEST commu-

nity; (ii) the complexity-stability relationship may show positive monotonic, negative 

monotonic, peaked and double-peaked patterns in general MEST communities, while 

the double-peaked pattern is only obtained when both the adaptation intensity and 

interspecific competition are high. Furthermore, model predictions may be consistent 

with both the negative monotonic pattern revealed in freshwater communities and 

the peaked pattern revealed in marine communities. Finally, we infer that foraging 
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adaptations of the top predator may alter positive or/and negative feedback loops 

(trait-mediated indirect effects) to affect the stability of general MEST communi-

ties. Our adaptive network framework may provide an effective way to address the 

 complexity-stability debate in real ecosystems.

Author summary

In our recent work, we investigated the intricate relationship between network 
complexity and stability within diverse communities that exhibit both mutualistic 
and antagonistic interactions. Traditional ecological theories often suggest that 
complex networks are inherently unstable, yet nature is full of such complexity. 
To bridge this gap, we developed an adaptive network model that considers both 
mutualist-exploiter-predator dynamics and the evolution of foraging preferences. 
Our findings reveal that adaptive foraging strategies can significantly enhance 
the stability of mutualistic interactions while also introducing potential chaos 
under certain conditions. We identified various complexity-stability relationship 
patterns, indicating that both the intensity of foraging adaptations and interspe-
cific competition play critical roles. This insight could help explain the observed 
variability in stability across different ecological communities. Ultimately, our 
adaptive network framework offers valuable insights that may help resolve ongo-
ing debates about the stability of complex ecological networks, benefiting both 
scientific communities and conservation efforts aimed at preserving biodiversity.

Introduction

May’s local stability analysis of randomly connected species in food web models 
showed that increasing network complexity (e.g., connectance) leads to decreasing 
stability [1], but this result is contradictory to earlier empirical findings [2,3]. Due to 
the inconsistency, research of complexity–stability relations became one of the most 
challenging issues in theoretical ecology [4,5]. In fact, May’s model is the random 
matrix, while real ecosystems are not assembled purely at random [6]. The challenge 
of understanding the structures and interactions in real ecological networks that 
deviate from May’s assumptions remains a difficult problem, and it has been a central 
focus of food web ecology for decades [7–9].

Previous research revealed three possible relationship patterns between con-
nectance (e.g., the ratio of actual links to potential links), one of important metrics 
of the network complexity [10], and stability (e.g., locally stable if Re(λmax)<0) in 
model and empirical ecosystems: negative correlation [1], positive correlation [11] 
and no correlation [8]. For instance, early theoretical studies found that increasing 
the connectance will decrease feasibility (i.e., positive equilibrium solution) [12] 
and global asymptotic stability [13], although indices of the complexity and stability 
in these studies vary; ecologists asserted that complex food webs are rarely likely 
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to persist due to the inherently unstable properties of complex systems. On the contrary, by excluding unrealistic food 
web structures, Plitzko et al. [14] revealed the existence of positive relation between network connectance and stability 
within realistic parameter regions. In addition, by conducting a stability analysis of 116 quantitative food webs sampled 
worldwide, Jacquet et al. [8] found that complexity (connectance) is not associated with stability and speculated that 
empirical ecosystems have several non-random properties (e.g., interaction strength topology and frequency distribution) 
contributing to the absence of a complexity–stability relationship. However, there is still a lack of theory to reconcile the 
 complexity-stability debate in more realistic network structures.

One potential reason for these variable complexity-stability relationships could be changes in the dimensionality of the 
system (i.e., ecosystem size and interaction types). Recent studies have found that the increase in the dimensionality 
can change the cases from stable to unstable states. Main examples include the omnivory-stability relationship [15], the 
 diversity-stability relationship [16] and the link-strength variability-stability relationship [17]. In fact, incorporating pheno-
typic trait dynamics into the single ecological framework can not only greatly increase the system dimension, but may 
change community stability [18–20]. However, we still do not know how eco-evolutionary feedbacks affect the relationship 
between complexity and stability in ecologically realistic networks.

Adaptive foraging [21], an important behaviour trait, and is thought to potentially affect the stability of food webs [22,23] 
and mutualistic networks [24,25]. For instance, Kondoh [22] added adaptive foraging (AF) into a food-web model with linear 
nonsaturating functional responses, and found that complexity (connectance) may enhance community stability (i.e., commu-
nity persistence) through the facilitation of dynamical food-web reconstruction; without the AF, food-web complexity reduces 
the persistence. In addition, Uchida and Drossel [23] found that foraging behaviour has a large stabilizing effect, which leads 
to a positive complexity–stability relationship in food webs. In mutualistic networks, Valdovinos et al. [24] found that the AF 
reverses positive effects of connectance on the community stability by partitioning the niches among species within guilds. 
Overall, compared without the AF, the above findings seem to suggest that the AF may reverse the complexity-stability 
relationship in food webs or mutualistic networks. In fact, real ecological communities often contain both antagonistic and 
mutualistic relationships [26–28]. For instance, by integrating pollinators into food webs, Hale et al. [26] found that the mutu-
alisms can increase the persistence and temporal stability in multiplex networks. However, little is known about community 
dynamics driven by the AF in real ecosystems with both mutualistic and antagonistic interactions.

Recently, we have developed a theoretical framework that incorporates both mutualistic and antagonistic relationships 
[29]. The model framework includes four species across three trophic levels: top predator, specialist predator, mutualist 
and exploiter. First, the exploiter competes with the mutualist for resources and both of them are preyed upon by the 
top predator, and the mutualist-exploiter-top predator interaction is similar to apparent competition [30]. Moreover, the 
 mutualist-specialist predator-top predator interaction is usually treated as omnivory [31]: the specialist predator only feeds 
on the mutualist, while the top predator feeds on both the specialist, mutualist and exploiter. Significantly, because the 
generation span of the fig tree is much longer than both fig wasps (i.e., specialist predator, mutualist and exploiter) and 
the ant (i.e., top predator), this theoretical framework ignored the basal resource (i.e., fig tree) and treated the mutualist 
as one potential resource [29]; meanwhile, it assumed that foraging preferences of the top predator to all prey were fixed 
constants. In fact, a flexible network structure driven by foraging preferences of predators often vary in time and space 
[32,33]. However, it is still unclear how adaptive foraging of the top predator affects the complexity-stability relationship  
in mutualist-exploiter-specialist predator-top predator (MEST) communities.

In what follows, we establish an adaptive network model to evaluate the effects of the adaptive foraging on the relation-
ship between network complexity (i.e., connectance) and stability (i.e., community persistence at steady state) in MEST 
communities. This study mainly focuses on answering two key scientific questions: (i) what are the intrinsic mechanisms 
by which variable complexity-stability relationship emerges in an adaptive dynamic framework and (ii) how to reconcile 
the complexity-stability debate in model and empirical ecosystems. Our work may offer valuable insights on the stability of 
complex ecological networks.



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013245 July 9, 2025 4 / 17

Methods

Study system

To investigate the complexity-stability relationships in ecological communities, this work extends a recent study (Fig 1A) of 
omnivorous food-web framework [29]. First, the community includes a variety of exploiters. For instance, up to 32 species 
of non-pollinating wasps (competitors of the pollinating wasp) can be found in Ficus microcarpa [34]. Second, unlike the 
previous model [29], dietary preferences of the top predator to prey are not fixed, but change over time. For instance, 
early studies found that foraging strategies of the ant are characterised by flexibility [35] and adaptability [36]. On this 
basis, we can obtain a new research framework (Fig 1B). In Fig 1B, as the top predator (P) flexibly adjusts its foraging 
strategies according to feeding preferences (i.e., the width of solid lines represents the intensity of feeding preferences 
of P to all prey). Significantly, because the generation span of the basal resource (i.e., fig tree) is much longer than other 
species in Fig 1A, our adaptive network framework ignores the basal resource (i.e., fig tree) and treats the mutualist as 
one potential resource.

Adaptive network model

Recent empirical work found that feeding rates may commonly be unsaturated (i.e., Holling type I functional response or 
linear function) and that the degree of saturation varies with a variety of factors including body size, habitat, interaction 
dimension and temperature [38]. In this study, based on the network framework presented in Fig 1B, we established an 
adaptive network model with the Holling type I functional response:

 

dF0

dt
= F0


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
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,

 (1)

Fig 1. A graph of relationships among top predator (P: ant), specialist predator (C: parasitoid wasp), mutualist (F0: pollinating wasp) 
and exploiters (Fi (i = 1, . . . ,n): non-pollinating wasps). (A) empirical ecosystem work [37] and (B) an adaptive network framework in  
mutualist- exploiter-predator communities. θj  is the foraging effort of P to Fj ( j = 0, 1, . . . , n), θC is the foraging effort of P to C and θC = 1 –

∑n
j=0 θj.  

Solid lines indicate predation and each exploiter competes with the mutualist and other exploiters for resources generated by the mutualist; the 
width of solid lines represents the intensity of selective preferences of P to all prey.

https://doi.org/10.1371/journal.pcbi.1013245.g001

https://doi.org/10.1371/journal.pcbi.1013245.g001
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= gθj
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
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, , j = 0, 1, 2, . . . , n.

 (5)

the variable F0 is the mutualist biomass, Fi (i = 1,2,…,n) is the exploiter biomass, C is the biomass of the specialist pred-
ator, P is the biomass of the top predator, θj  is the foraging effort of P to Fj (j = 0,1,2,…,n), and function WP defines the 
fitness [39] of P. Model parameters: r0 is the growth rate of F0, ri is the growth rate of Fi; α0, αC, αP are density-dependence 
coefficients of species F0, C and P, respectively; βi0 is the interspecific competition coefficient of Fi to F0, βji is the interspe-
cific competition coefficient of Fj to Fi; aC is the consumption rate of C to F0, and u0, ui, uC are consumption rates of P to F0, 
Fi and C, respectively; eC is the conversion efficiency of C, eP is the conversion efficiency of P; d0, di, dC and dP are mortal-
ity rates of F0, Fi, C and P, respectively.

In Eq. (2), similar to early viewpoint that carrying capacity as a function of density of interaction partners [40,41], F0

q  
acts as the capacity of Fi and q is a scale coefficient [29]. The parameter q presents the strength of the system’s depen-
dence on mutualistic relationships, while the new framework presented in Fig 1B will become the food web model without 
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mutualistic interactions when q → 0; moreover, when q> 0, all exploiters are dependent upon the mutualist’s facilitation of its 
resource. Specifically, since the life cycle of fig trees is much longer than that of fig wasps (e.g., the pollinating fig wasp F0, 
non-pollinating fig wasp Fi, and parasitoid wasp C) [42,43], we set the mutualist (F0) to represent the mutualistic relation-
ship between the fig tree and its pollinating fig wasp, and the development of Fi depending on the mutualist (i.e., F0/q). In 
Eq. (5), the evolution of foraging preference (θj) derives from Lagrange-multiplier methods [44,45] and g is the intensity of 
foraging adaptation.

Model analysis

In the adaptive network model, all model parameters (Table 1) can be chosen based on the stability criteria [46] under the 
non-negative equilibrium. We calculate a positive equilibrium of species coexistence and analyze the maximal real part 
of all eigenvalues (i.e., Re(λmax)) under the equilibrium, and obtain a locally stable state when Re(λmax) < 0. Similar to our 
early theoretical work in the fig-wasp system [29,47], the unit of each parameter is dimensionless.
In the mutualist-exploiter-specialist predator-top predator (i.e., four-species MEST) community, first, we fixed other param-
eters and analyzed how the intensity (g) of adaptive foraging affects community stability and population dynamics (e.g., 
periodic and aperiodic/chaotic dynamics; S1 Appendix). Second, because the exploiter (F1) is a disruptor of the mutualistic 
relationship and is subject to interspecific competitive pressure (β) from the mutualist (F0) and predation pressure (u1) from 
the top predator (P), we fixed the adaptation intensity (g) and analyzed the effects of key parameters (i.e., β, u1) changing 
on food web structure and stability (i.e., calculating the Re(λmax) at the equilibrium point of the four-species MEST model 
based on the analytical solution method [29]). Finally, we do sensitivity analyses of model parameters (S2 Appendix) and 
model structures (S3 Appendix).

Notably, when network size is small, we can easily list various network structures (e.g., each boundary equilibrium point 
of the adaptive network model) and calculate the Re(λmax) at the equilibrium point separately; however, when the network 
size is large (i.e., network size is set to 35), it is more difficult to list all possible network structures (e.g., in the 35-species 
community, the network structure will change when the top predator selectively preys on the specialist predator and 32 
exploiters, so the total number of boundary equilibrium points is 233 – 2) and calculate the Re(λmax).

Therefore, in general MEST communities (e.g., network sizes are set 5, 10, 15, 20, 25, 30, 35), we used community 
persistence (the fraction of remaining species in the system after running the simulations long enough that this fraction 
stayed constant) as a measure of the stability in complex systems. Then, we investigated how interspecific competi-
tion (β), foraging adaptation (g) and network size (N) affect the relationship between system stability (e.g., community 
persistence) and network connectance. The connectance can be calculated by the ratio of actual links (i.e., connection 
between the top predator and its prey) to potential links (i.e., fully connection); when the connectance is less than 1, some 

Table 1. Parameters used in the adaptive network model.

Par. Description Value Par. Description Value

r0 growth rate of F0 0.5 α0 density-dependent coefficient 0.13

βji interspecific competition of Fj to Fi βji = β ∈ [0, 0.18] aC consumption rate of C to F0 0.2

u0 consumption rate of P to F0 0.11 d0 mortality rate of F0 0.05

ri growth rate of Fi [0.3, 0.4] q scale coefficient
mortality rate of Fi

0.25

ui consumption rate of P to Fi [0, 0.3] di 0.05

eC conversion efficiency of C 1 uC consumption rate of P to C 0.2

dC mortality rate of C 0.05 αC density-dependent coefficient 0.12

eP conversion efficiency of P 1 dP mortality rate of P
adaptation intensity

0.05

αP density-dependent coefficient 0.1 g [0.05, 0.5]

https://doi.org/10.1371/journal.pcbi.1013245.t001

https://doi.org/10.1371/journal.pcbi.1013245.t001
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of the exploiters may not be foraged by the top predator and rely on the commons for resources (e.g., seeds produced 
by the pollination of the pollinating fig wasp) generated by the mutualist F0 [29]. Moreover, we explored the potential for 
species coexistence in a complex MEST community (S4 Appendix). Furthermore, we combined theoretical predictions 
with empirical data analyses (S5 Appendix). Finally, we offered a potential mechanism for the foraging adaptation affect-
ing community stability. In model simulations (via ODE45 in Matlab R2016a), species and foraging efforts were deemed 
extinct if the biomass fell below 10-12.

Results

Foraging adaptation and stability in a simple system

In the mutualist-exploiter-specialist predator-top predator (i.e., four-species MEST) community, our adaptive network 
model exhibits a complex dynamic behaviour as the intensity (g) of foraging adaptations increases (Fig 2).

As g increases, the population dynamics of the exploiter (F1) and preference trait (θ1) dynamics evolve from simple 
periodic behaviour (g = 0.08, case I; Fig 2A, 2C and 2D), period-doubling oscillations (g = 0.22, case II; Fig 2A, C, D) into 
chaos (g = 0.28, case III; Fig 2A, 2C and 2D). Population chaos or cycles can be quantitatively detected through the Lya-
punov exponent (LE) spectrum (Fig 2B). A positive LE indicates that the population undergoes chaotic dynamics (g = 0.28, 
case III; Fig 2B). As the value of g is increased, the population dynamics of F1 and trait dynamics (θ1) will change from 
chaos to period-doubling oscillations (g = 0.34, case IV; Fig 2A, 2C and 2D) and simple cycles (g = 0.48, case V; Fig 2A, 2C 

Fig 2. Intermediate intensity of foraging adaptations generates chaos in the mutualist-exploiter-specialist predator-top predator (i.e., four-species 
MEST) community. (A) bifurcation diagram; (B) Lyapunov exponent spectrum; (C) time series of population biomass (F1); (D) time series of foraging effort (θ1). 
Model parameters: r1 = 0.35, d1 = 0.05, u1 = 0.15, β10 = β01 = β = 0.18, g∈[0.05, 0.5] and other parameter values are presented in Table 1.

https://doi.org/10.1371/journal.pcbi.1013245.g002

https://doi.org/10.1371/journal.pcbi.1013245.g002
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and 2D). Overall, neither too high (cases IV and V; Fig 2) nor too low (cases I and II; Fig 2) intensity (g) of foraging adap-
tations lead to chaos, while only intermediate intensity causes the system to generate chaotic dynamics (case III; Fig 2). 
Furthermore, population dynamics of other species (i.e., F1, C and P) in the four-species MEST community present similar 
patterns (Figs A-C in S1 Appendix).

When fixed the intensity (g = 0.28; an intermediate adaptation intensity presented in Fig 2) of foraging adaptations, while 
varying both the consumption rate (u1) and interspecific competition (β10 = β01 = β), we can obtain four food-web structures 
and their local stability (Fig 3).

First, stable coexistence (i.e., Re(λmax)<0) will not exist (Re(λmax)>0; Fig 3A) when the top predator P does not prey 
on the specialist predator C (θC = 0); when P preys on C (θC ̸= 0), stable coexistence presents at high consumption rate 
u1 and high interspecific competition β (Re(λmax)<0; Fig 3D). Predation of C by P promotes stable coexistence of spe-
cies also presented in other food web structures (Fig 3B and 3C). Specifically, when P does not prey on the mutualist F0 
and C (θC = 0, θ0 = 0), no stable coexistence exists in the system (Re(λmax)>0; Fig 3C); when P preys on C but not F0 
(θC ̸= 0, θ0 = 0), stable coexistence of species will be achieved over a wide parameter space (u1 and β): when β is low, 
species coexistence is widespread; while when β is an intermediate value, species coexistence is only achieved when u1 
is a moderate value (Re(λmax)<0; Fig 3B). Second, by comparing Fig 3B and 3D, we can intuitively find that compared to 
P preys on F0 (θ0 ̸= 0; Fig 3D), P does not prey on F0 will show more stable regions of species coexistence (θ0 = 0; Fig 
3B). Similarly, predation of F0 by P is detrimental to community stability and is also presented in other food web structures 
(Fig 3A and 3C). Specifically, compared to P preys on F0 but not C (θ0 ̸= 0, θC = 0; Fig 3A), P does not prey on F0 and C 
(θC = 0, θ0 = 0) will show oscillations with a lower amplitude (Re(λmax)<0.03; Fig 3C). Finally, to test the effect of parame-
ter selection on the state variables (i.e., F0, F1, C, P, θ0 and θ1) in the four-species MEST community, a sensitivity analysis 
of each parameter was conducted (Table A and Figs A-B in S2 Appendix).

Fig 3. Network structures and local stability change with the interspecific competition (β) and consumption rate (u1) in the four-species 
MEST community. Stable coexistence of species is achieved when Re(λmax)<0. In each simulation case, the blue regions have higher stability than 
the red regions, and the empty white regions denote no solution to network modules. Key parameters of the four-species model: g = 0.28, u1

∈[0, 0.3], 
β10 = β01 = β∈[0, 0.18], r1 = 0.35 and other parameter values are presented in Table 1.

https://doi.org/10.1371/journal.pcbi.1013245.g003

https://doi.org/10.1371/journal.pcbi.1013245.g003
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Foraging adaptation and stability in general MEST communities

In this section, varying adaptation intensity (g), interspecific competition (βij = βji = β) and network size (N) could promote 
system stability (i.e., community persistence at steady state) as a function of the connectance in general MEST communi-
ties (Fig 4).

First, when the interspecific competition is low (β = 0.1; interspecific competition β is lower than intraspecific competition 
(the density-dependence parameter α0 = 0.13)) and the adaptation intensity is fixed (g = 0.08), the connectance-stability 
relationship will go through positive monotonic (i.e., N = 5), negative monotonic (i.e., N = 10, 15, 20) and peaked (i.e., 
N = 25, 30, 35) patterns as the network size (N) increases (Fig 4A). This pattern still exists as the adaptation intensity 
increasing (g = 0.28, 0.48; Fig 4B and 4C). In addition, when the interspecific competition continues to increase (β = 0.12) 
and the adaptation intensity is relatively high (g = 0.28, 0.48), we could still observe similar patterns of positive monotonic, 
negative monotonic and finally single-peaked (Fig 4E and Fig 4F). When the interspecific competition is an intermediate 
value (i.e., β = 0.14 ≈ α0) and the adaptation intensity is relatively high (g = 0.28, 0.48), the connectance-stability relationship 
mainly shows a peaked pattern (Fig 4H and 4I), while a negative monotonic pattern (Fig 4D and 4G) could be obtained 
when the adaptation intensity is low (g = 0.08) and the interspecific competition approaches the intensity of intraspecific 
competition α0 (e.g., β = 0.12, 0.14). Finally, when the intensity of interspecific competition is high (i.e., β = 0.16 > α0), as 
the network size (N) increases, a double-peaked pattern of the connectance-stability relationship could be obtained when 
both the network size and adaptation intensity are relatively high (g = 0.28, 0.48 and N≥15; Fig 4K and 4L), while the 
 connectance-stability relationship does not show a clear trend when the adaptation intensity is small (g = 0.08; Fig 4J).

Comparison between theoretical prediction and empirical data analysis

Given the positive correlation between salt concentration and competition intensity [48], compared to freshwater 
communities, we deduce that marine communities have higher salt concentrations and are therefore more compet-
itive [8]. On this basis, we compare theoretical prediction with empirical data (i.e., freshwater and marine communi-
ties) analysis (Fig 5).

For one thing, model simulations show that the connectance-stability relationship presents a negative monotonic 
pattern when the interspecific competition is low (β = 0.1) and the network size is fixed (N = 15), while changing 
the intensity of foraging adaptation (g) will not change the decreasing trend (Fig 5A). Our theoretically negative 
 complexity-stability relationship is consistent with empirical result revealed in freshwater communities (Fig 5C and S5 
Appendix). For another, when the competition intensity is high (β = 0.16) and the network size is fixed (N = 15),  
the connectance-stability relationship shows peaked patterns (Fig 5B), i.e., a shift from a single-peaked pattern 
under the low intensity of foraging adaptation (g = 0.08) to a double-peaked pattern under the high intensity of forag-
ing adaptation (g = 0.48). Our theoretically peaked patterns may be consistent with data analysis revealed in marine 
communities (Fig 5D and S5 Appendix).

Feedback loops due to foraging adaptation regulate community stability

Finally, we propose a potential mechanism of maximal positive or/and negative feedback loops [49] for the foraging adap-
tation affecting the stability of the MEST community (Fig 6).

In the four-species MEST community (i.e., network structure in Fig 3D), when adaptive foraging (AF) behaviour is not 
considered, the network has two maximal feedback loops (Fig 6A): positive feedback loop 

(
F0

+→ C +→ P –→ F1
–→ F0

)
 

and negative feedback loop 
(
F0

–→ F1
+→ P –→ C –→ F0

)
. When the AF is introduced into the four-species system, the 

new system has three types of maximum feedback loops based on trait-mediated indirect effects (i.e., foraging prefer-
ence trait of the top predator modulates the system stability by altering the dominant positive or/and negative feedback 
loops): i) negative feedbacks (Fig 6B), where the foraging strategy is to increase predation on the specialist predator 
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C (AF inhibits C) and reduce predation on the exploiter F1 (AF promotes F1), and we can obtain two negative feedback 
loops 

(
P +→ AF –→ C –→ F0

–→ F1
+→ P & P +→ AF +→ F1

–→ F0
+→ C +→ P

)
; ii) positive feedbacks (Fig 6C), where the for-

aging strategy is to reduce predation on C (AF facilitates C) and increase predation on F1 (AF inhibits F1), and we can 

Fig 4. The variable relationship between initial connectance and community stability (community persistence at steady state; mean ± 
standard deviation based on 20×20 replicates) in general MEST communities. The different coloured regions represent different patterns of 
 connectance-stability relationships. Key parameters of the full model: ri ~ U[0.3, 0.4], di = 0.05, ui = 0.15, βi0 = βji = β, and other parameter values are pre-
sented in Table 1.

https://doi.org/10.1371/journal.pcbi.1013245.g004

https://doi.org/10.1371/journal.pcbi.1013245.g004
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obtain two positive feedback loops 
(
P +→ AF +→ C –→ F0

–→ F1
+→ P & P +→ AF –→ F1

–→ F0
+→ C +→ P

)
; iii)  

positive and negative feedbacks (Fig 6D), where the foraging strategy is to reduce (or increase) predation on 
both C and F1, and we can obtain two groups of both positive and negative feedback loops: the increased pre-
dation case 

(
P +→ AF +→ C –→ F0

–→ F1
+→ P & P +→ AF +→ F1

–→ F0
+→ C +→ P

)
 and the decreased predation case (

P +→ AF –→ F1
–→ F0

+→ C +→ P & P +→ AF –→ C –→ F0
–→ F1

+→ P
)
. For general MEST communities, the maximum 

feedback loop of the network without the AF also includes both positive and negative feedbacks; while when the AF 
is introduced into the community, the maximum feedback loop for the new system is similar to the four-species case 
presented in Fig 6.

Discussion

In this study, we develop an adaptive network model to evaluate the connectance-stability relationship in mutualist- 
exploiter-predator communities. Our results showed that adaptive foraging (AF) contributes to the stability of mutualism 
and intermediate intensity of foraging adaptations can lead to chaotic dynamics. Moreover, the connectance-stability 

Fig 5. Comparison between theoretical prediction and empirical data analysis. (A, B) theoretical prediction presented in Fig 
4; (C, D) empirical data analysis presented in the previous study [8], while the community stability is measured as 0.02/Re(λmax) for 
(C) freshwater communities and (D) marine communities. The fitted curve in (C) Stability = 0.89125-1.05279 × Connectance; in (D) 
Stability = 16.04436 × Connectance-16.60223 × Connectance2-3.54895.

https://doi.org/10.1371/journal.pcbi.1013245.g005

https://doi.org/10.1371/journal.pcbi.1013245.g005
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relationship may show different patterns (i.e., positive monotonic, negative monotonic, peaked and double-peaked pat-
terns), while the double-peaked pattern could be obtained when both the adaptation intensity and interspecific competi-
tion are large. In addition, our theoretical predictions may be consistent with empirical results revealed in both freshwater 
and marine ecosystems. Finally, we inferred that the foraging adaptation alters positive or/and negative feedback loops 
(trait-mediated indirect effects) to affect community stability.

Intermediate intensity of foraging adaptation generates chaos

Our theoretical results found that increasing the intensity (g) of foraging adaptation, the system would switch between 
periodic and chaotic states (Fig 2); moreover, such chaotic dynamics may also emerge in a relatively complex community 
(Fig A in S4 Appendix). Our work supports the earlier theoretical view of foraging at the edge of chaos [50,51], which oper-
ates in a critical dynamical mechanism between order and chaos [52]. Indeed, ecosystems, as complex adaptive systems 
[53], may stay at the edge of chaos [54]. In addition, our theoretical results suggested that only the intermediate intensity 
of foraging adaptation can lead to chaos (case III; Fig 2), whereas too low (cases I and II; Fig 2) or too high (cases IV and 
V; Fig 2) cases only generate regular/periodic dynamics. Earlier theoretical and empirical work showed that chaos may 
provide a means for flexibility [55,56]. In our system, an intermediate adaptation intensity of the top predator can produce 
the flexibility, which may facilitate the adaptation of the food web to environmental disturbance. This finding coincides with 
earlier studies of food webs [57], fig-wasp mutualism [47] and antigenically diverse pathogens [58], which reveal that the 
moderate levels of stress may lead to chaos or complexity maximization.

Fig 6. Foraging adaptation regulates the stability of the MEST community by changing positive or/and negative feedback loops. Sign ‘+’ 
indicates promotion and ‘-’ indicates inhibition. AF-adaptive foraging. (B, C) ‘+/-’ includes one case: promotion or inhibition; (D) ‘+(-)’ and ‘-(+)’ include two 
cases: promotion and inhibition, respectively.

https://doi.org/10.1371/journal.pcbi.1013245.g006

https://doi.org/10.1371/journal.pcbi.1013245.g006
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Adaptive foraging contributes to the stability of mutualism

We found that predation by the top predator on the specialist predator will promote stable coexistence (Fig 3B and 3C), 
while predation by the top predator on the mutualist will greatly reduce the area of stable coexistence (Fig 3B and 3D). In 
other words, the protection of mutualist by top predator (non-predation on mutualist or predation on the specialist predator 
of the mutualist) will contribute to community stability. This finding supports one early research of mutualistic networks 
[59], which showed that incorporation of adaptive foraging (AF) into the dynamics of mutualistic systems increased the 
community persistence. Moreover, our work also supports earlier empirical work [37], which revealed that predatory ants 
(P) contribute to the maintenance of mutualism between the fig tree (i.e., the basal resource) and pollinating fig wasp (F0). 
However, our results reverse recent theoretical findings [29]. The latter also studied the four-species MEST community 
without the AF, and found that the top predator (P) would always become extinct when omnivorous link does not exist 
(i.e., θ0 = 0; please also see the cited work presented in Fig 2i and the diagonal of region C5b in Fig 5). Similar to evolu-
tionary rescue theory [60,61], our adaptive network model reveals that the AF of the top predator may rescue itself from 
extinction by comparing the no-foraging adaptive scenario [29]. Finally, our model results also reverse theoretical predic-
tions presented in the resource-mutualist-exploiter-predator community, the latter found that stable coexistence (i.e.,  
Re(λmax) < 0) may not emerge when the top predator P does not prey on the mutualist F0 (Fig A in S3 Appendix). An 
important reason for the inconsistency is that the new theoretical framework neglected life history of the basal resource, 
while the life cycle of fig trees (R) is much longer than that of fig wasps (i.e., F0, F1, C) and the top predator (i.e., P). There-
fore, compared with directly adding the basal resource to the model (S3 Appendix), it is more reasonable to ignore the 
resources and regard the mutualist as one potential resource (Fig 3).

Network size and interspecific competition regulate community stability

In our recent work [29], we found that the increased competition can promote species coexistence in the omnivorous food 
web (the four-species MEST community); similarly, in this study, we also revealed that positive correlation between inter-
specific competition and community stability under the intermediate to large network sizes (Fig 4): when we fix the network 
size and connectance (N = 10 and C = 0.7; blue regions in Fig 4C, 4F, 4I and 4L), increasing the competition intensity (β) 
will cause stability to first decrease and then increase; when the network size is large (N = 20 and C = 0.7; green regions), 
the increase of the competition intensity (β) will cause a steady increase in community stability; moreover, when the 
adaptation intensity is low (g = 0.08; Fig 4A, Fig 4D, 4G and 4J) or an intermediate value (g = 0.28; Fig 4B, 4E, 4H and 4K), 
the competition-stability relationship shows similar patterns under the fixed network connectance. Our theoretical results 
support earlier theoretical and empirical work, which show the competition promote species coexistence in a theoretical 
framework [62] and attributes to stability of culturable microbial species [63].

Reconcile the complexity-stability debate in empirical ecosystems

Our theoretical predictions may match empirical results to a certain extent, showing a negative monotonic complexity- 
stability relationship (Fig 5A and 5C and S5 Appendix) and the peaked pattern (Fig 5B, 5D; S5 Appendix); similar to early 
multiple complexity-stability relationships [22,64,65], our work revealed that network complexity (i.e., connectance) may be 
not linearly correlated with stability in empirical ecosystems [8]. Moreover, our theoretical results found that the network size 
may reverse the connectance-stability relationship (Fig 4). This finding is consistent with earlier studies on the effects of 
the omnivory, diversity, and interaction strength on system stability [15–17]. Both of them found that the increase in system 
dimension can change the cases from stable to unstable states. Finally, our adaptive network framework that couples the 
mutualistic-antagonistic interaction may provide some suggestions for empirical work. For instance, experiments should be 
designed to incorporate the adaptive behaviour of studied individuals into the system (e.g., a good example is the adaptive 
learning of foraging skills in fish [66]), after all, ecosystems are often considered as complex adaptive systems [53].
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Foraging adaptation and feedback loops regulate community stability

In this study, we treated the foraging preference of the top predator as a behaviour trait and coupled it to population den-
sity/biomass (including density-mediated effects and trait-mediated indirect effects [67,68], while the latter can reinforce or 
oppose the former), and the theoretical results revealed that there may be multiple types of connectance-stability relation-
ships (Fig 4).

One potential reason for these patterns may be that adaptive foraging (AF) of the top predator alters the positive or/and 
negative feedbacks of the maximum feedback loop (Fig 6), which is often used to characterize system stability [49,69], and 
thus regulates community stability. In biological systems, positive feedback loops can move the system away from equi-
librium (unstable state), while negative feedback loops can reduce the effects of perturbations and return the system to a 
stable state [70]. In our study, when the top predator (P) increases predation on the specialist predator (C) and reduces 
predation on the exploiter (F1) (Fig 6B), the maximum feedback loop is negative feedback, which explains the positive 
monotonic pattern (Fig 4), and this positive pattern is consistent with early work of food webs [22]; moreover, the maximum 
feedback loop is positive feedback if P reduces predation on C and increases predation on F1 (Fig 6C), which may explain 
the negative monotonic pattern (Fig 4), and this negative case coincides with earlier theoretical work [1]. Finally, the other 
patterns (i.e., peaked and double-peaked patterns; Fig 4) may be caused by alternating dominant effects between positive 
and negative feedback loops (Fig 6D), and this peaked pattern is in line with previous theoretical study [65]. Specifically, the 
double-peaked pattern has one large peak and one small peak, and it may be a special case (i.e., damped oscillation) of 
the peaked pattern. Overall, the top predator changes the positive or/and negative feedback loops of the system by flexibly 
adjusting foraging strategies (trait-mediated indirect effects), thereby changing community stability [71,72].

Future direction

Future work will expand on the following two aspects: first, multilayer network structures need to be introduced into the 
adaptive network framework [27,28,73]. In this study, we focused on the effects of foraging adaptation by a top preda-
tor on community stability (i.e., our simulations were drawn from a limited set of examples and exhibited a somewhat 
restricted structure), whereas a more general scenario may be foraging selection by multiple predators on multiple 
prey [21,74]. Second, defensive traits of prey should be incorporated into the adaptive network framework [20,75]. For 
instance, plant secondary metabolites can affect the behaviour, feeding and digestion of pests to achieve resistance 
to pests [76]. However, in our work, only adaptive foraging (AF) of the top predator was considered and the adaptive 
behaviour of the prey is ignored. For a more realistic modeling framework, it is necessary to consider the complex adap-
tive behaviour of the individuals studied in the model [21,77,78]. Overall, coupling the AF of predators, prey defence traits 
and multilayer network structures to explore the structure-stability relationship in real ecosystems is urgently needed.
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