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Theories of the evolution of cooperation through reciprocity explain how unrelated
self-interested individuals can accomplish more together than they can on their own.
The most prominent theories of reciprocity, such as tit-for-tat or win-stay-lose-shift,
are inflexible automata that lack a theory of mind—the human ability to infer the
hidden mental states in others’ minds. Here, we develop a model of reciprocity with
a theory of mind, the Bayesian Reciprocator. When making decisions, this model
does not simply seek to maximize its own payoff. Instead, it also values the payoffs
of others—but only to the extent it believes that those others are also cooperating in
the same way. To compute its beliefs about others, the Bayesian Reciprocator uses
a probabilistic and generative approach to infer the latent preferences, beliefs, and
strategies of others through interaction and observation. We evaluate the Bayesian
Reciprocator using a generator over games where every interaction is unique, as well
as in classic environments such as the iterated prisoner’s dilemma. The Bayesian
Reciprocator enables the emergence of both direct-reciprocity when games are repeated
and indirect-reciprocity when interactions are one-shot but observable to others. In an
evolutionary competition, the Bayesian Reciprocator outcompetes existing automata
strategies and sustains cooperation across a larger range of environments and noise
settings than prior approaches. This work quantifies the advantage of a theory of mind
for cooperation in an evolutionary game theoretic framework and suggests avenues for
building artificially intelligent agents with more human-like learning mechanisms that
can cooperate across many environments.

theory of mind | cooperation | Bayesian models | evolutionary game theory | cognitive science

Explaining the evolution of cooperation—where self-interested individuals pay costs
to create collective benefits—has been a central focus of research across the natural
and social sciences for decades (1-6). A key conclusion that has emerged from this
work is the centrality of reciprocity in human cooperation: evolutionary game theoretic
models demonstrate that direct reciprocity (I'll help you if you help me) is possible
when interactions between individuals are repeated (1, 2, 7-10) and indirect reciprocity
(help those who help others) is possible when one-shot interactions are witnessed by
observers and individuals keep track of reputations (11-17). Surprisingly simple automata
models of reciprocal interactions in evolutionary games such as an iterated prisoner’s
dilemma (IPD) or donation games have provided elegant accounts of how conditional
cooperation can arise between unrelated individuals and revealed fundamental insights
into the behavioral mechanisms necessary to sustain it. For example, in repeated games,
strategies such as tit-for-tat (TFT) and win-stay-lose-shift (WSLS) (8) begin by acting
cooperatively but retaliate when defected upon in order to punish and discourage cheaters
who would exploit the altruism of other agents. However, the simplicity of both the
environments and models imposes stark limits on the generality of these accounts,
especially if taken as accounts of human cooperation.

First, human interactions are almost infinitely varied and not restricted to a single
game with a fixed number of players and decisions (2 players, 2 actions in PD),
while most automata are defined only for a single kind of specific (if stylized, generic)
game such as IPD. For automata, even small variations in the environment, such
as the degree of noise (7, 9, 15), variable payoffs (18-21), whether actions are made
simultaneously or sequentially (22-25), the number of actions available (26, 27) or
whether players can observe the actions of others (13, 14), all require different strategies.
Yet even when the same two people repeatedly interact in the same context, no two
interactions have exactly the same payoff structure; more broadly, we engage in all
manner of different interactions across which the number of participants, the options
available to each participant, and the resulting payoffs differ markedly (and often
unpredictably). Because of this variation, it is implausible (and impractical) to imagine
that human beings have learned or evolved a new strategy for every possible game
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they might encounter. Rather than a specific strategy for each
specific game, human cognition supports general cooperative
strategies that can be applied anywhere (28-30).

Second, in contrast to standard automata that operate only
at the behavioral level, people make predictions about the
cooperative potential of partners based on inferences over
the latent (unobservable) intentions, motives, and traits that
underlie those agents’ behavior (31, 32); taking into account
the possibility that observed actions may only noisily reflect
agents’ intentions or traits allows us to robustly handle the
uncertainty inherent in complex social interactions in a complex
dynamic world (33). People learn about cooperative partners and
their motives by integrating across long histories of interactions
into mental models of others, both their own experiences and
by observing third parties, not just their most recent behavior
as standard automata do. In humans, the capacity to make
inferences about these latent intentions and traits from sparse
and noisy observations of behavior is a crucial part of our “theory
of mind” (34, 35). Theory of mind is thought to be present in
young children, and in some more limited form even in preverbal
infants, playing an important role in how we develop a sense of
prosocial norms and moral judgment (36-39).

This paper introduces the Bayesian Reciprocator, an approach
to modeling the evolution of human cooperation that highlights
the value of rational theory of mind inferences in supporting
agents’ robust cooperation across a large class of environments
and settings. Our approach brings together key ideas for
modeling humans that have been highly influential in cognitive
science, economics, and computer science. First, subjective utility
functions that express general preferences (as opposed to game-
specific behavioral rules) enable generalizable decision making
that is sensitive to the payoffs and structure of new games
(40). Second, the potential to value the payoffs received by
other cooperative players in one’s own utility function produces
generalizable cooperative and altruistic behavior (41-43). Third,
dynamically adjusting how others are valued proportional to
one’s belief that they are cooperating in the same way, realizes
a powerful form of reciprocity based on shared values (44—
46). Fourth, Bayesian inference over a generative model of the
latent decision-making and learning processes of others, Bayesian
theory of mind, enables players to rapidly and robustly infer the
utility functions of others under uncertainty and noise, thereby
identifying the cooperators that they, in turn, should cooperate
with (47-51). In short, the Bayesian Reciprocator conditionally
cooperates with a kind of virtue ethics; the reputation (and
worthiness as a cooperative partner) of other players is determined
by their latent utility function, which is revealed through behavior
(52, 53). Finally, the Bayesian Reciprocator unifies many key
features that have been shown to be important for cooperation:
reciprocity, reputation, relationships, robustness under noise,
forgiving of errors, and is grounded in the computations of
the earliest emerging and most distinctly human cognitive
operations: utility-based decision making, probabilistic inference,
and theory of mind.

We first describe the Bayesian Reciprocator and describe its
learning and decision-making dynamics (Figs. 1 and 2). Next,
we develop a setting for studying the evolution of cooperation,
the Game Generator, where every interaction between players
is unique and varies in terms of the number of players, the
number of actions, and the payoffs (Fig. 3). Using evolutionary
simulations, we show that the Bayesian Reciprocator achieves
cooperative equilibria in the Game Generator through both
direct and indirect reciprocity (Figs. 4 and 5). Finally, we show
that the Bayesian Reciprocator outcompetes common automata
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Fig. 1. Belief dynamics with a Bayesian theory of mind. (A) Beliefs over other
player’s utility functions are represented as probability distributions. Shown
is Bob's prior over Alice’s utility function (Ugjice ). (B) Payoffs for the Give-Keep
game. The donor decides whether to pay 1 and give 3 to a receiver (“give”)
or do nothing (“keep”). (C and D) Bob's posterior over Uyjic, resulting from
inferences from Alice’s behavior after a short interaction. The same action by
Alice can lead to different beliefs depending on the prior interaction. If Alice
chooses keep Bob infers she is likely Selfish (C, Top), but if Alice chooses keep
after Bob also played keep, she is inferred to be either Bayesian Reciprocator
or Selfish as her action can be interpreted as reciprocation (C, Bottom). If Alice
chooses give (D, Top), Bob's beliefs update to put higher weight on her either
being Bayesian Reciprocator or Altruistic and lower probability of her being
Selfish, but if Alice chooses give after Bob played keep she is inferred to be
Altruistic (D, Bottom).

strategies in the IPD and expands the scope of cooperation in
that game (Fig. 6).

The Bayesian Reciprocator

A game G is a set of actions a that specify positive and negative
payoffs R(a) for each player. Player i from a population V players
has payoff R;() and a private subjective utility function U;(a).
Players with a utility function (as opposed to automata strategies)
select the action (2*) with the highest (expected) utility with ties
broken randomly.

4 = argmax U;(a). [1]

aeG

All players experience action errors where a nonintended ran-
domly chosen action is taken instead of the player’s intended
action with probability e. When these errors happen, only the
implemented action is observed; the intention is not.

Players track their beliefs about the utility functions used by
others as B;;(U), which represents the degree of belief ([0, 1])
player 7 has that player j is using utility function U. The Bayesian
Reciprocator is defined by the utility function (action dependence

dropped for clarity):

Ui=Ri+ ) RixBy(U =Up. [2]
Viatd

That is, the Bayesian Reciprocator subjectively values their own
payoff (R;) plus the payoffs received by other players, (R;;)
proportional to their own belief that each other player ; has
the same utility function Bj;j(U = U;). When B;(U = U;)
approaches one, the Bayesian Reciprocator follows the maxim of
treating others as it would treat itself (54), when Bj;(U = U;)
approaches zero, the Bayesian Reciprocator has no regard for
the payoff of the player and acts only toward its direct interests.
Thus, the Bayesian Reciprocator is a parochial cooperator. It
narrowly values the welfare of only those it recognizes as the same
type (55).

In this work, we study abstract resource distribution and
trade-off games. However, realistic decisions and, thus, realistic
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Fig. 2. The action, observation, learning loop for the Bayesian Reciprocator. Start with prior beliefs over the utility functions of the other players. Act according
to those beliefs and observe the actions of others. Calculate the likelihood of that behavior given the different models in the prior and use them to update the

posterior. Finally, act in the next game, and the learning loop repeats.

utility functions will inevitably involve choosing between diverse
goods and currencies. For instance, players may have arbitrary
preferences over foods, humor, activities, work, etc. While we will
not delve into this additional complexity formally, our intention
is that the comparison of utility functions, B;;(U = Uj), include
only the part of the utility function that concerns the valuation
of others’ welfare. It is interesting to consider that including
personal preferences as a condition for cooperation may lead to
moralization, in/out-group effects, or polarization.

We will primarily analyze the evolution of the Bayesian
Reciprocator in the presence of two other utility functions: a
Selfish player that values only its own payoff (U; = R;) and
an unconditionally Altruistic player that values its own payoff
equally with all other players (U; = R; + > i#i ). These utility
functions generalize the unconditional automata Always Defect
(AlID) and Always Cooperate (AlIC). The utility functions of all
players are always private and thus not observable by any other
player. Thus the Bayesian Reciprocator leverages theory of mind,
the ability to infer the latent causal forces that drive action (in
this case, their utility functions) from their behavior.

To carry out these inferences, we draw the idea that Theory
of Mind, can be modeled as Bayesian inference over a generative
model of another agent. Bayesian theory of mind (BToM) has
shown success at modeling empirical human judgments of mental
states across a wide variety of contexts: attributing beliefs and
desires to a single agent making decisions under uncertainty (56),
judging whether an individual is helping (or hindering) another
(48), whether a group is working together or competing with each
other (49-51), and how to coordinate with communication (57).

It has also been influential in developing agents that understand
the actions of other agents and people (58-60).

Applying BToM to a two-player setting without loss of
generality, when player 7 observes ;s action d; in G’ at time
t, then 7 updates its previous beliefs Bffl to Bf-j following Bayes

rule:
t t t t t pt\ pt—1 t—1 t—1
Bi(Ul4), G') o P(&}|Uj, G, By,) B (U1, "), [3]

the likelihood, P(4|Uj, G', By,) is the probability of the j’s action
a]’- at time # in game G’ assuming they have the utility function
U; and beliefs about 7s utility function Bj;. This probability is
equal 1 — € for the action chosen by Eq. 1 and equal to €/|G|
(where |G| is the number of actions) for each other action in the
game to account for action error.

The iterative update of B’ based on B~! terminates at # = 0
which is the prior, Bg.(U ). The utility functions and player
types in Bg(U ) with nonzero probability determine the support
for inference. To encourage prosocial initial behavior in the
Bayesian Reciprocator, the prior on others sharing the same
type is 82(0} = U;) = 0.5, and the remaining probability
is distributed equally over the other utility functions and player
types included in the evolutionary tournament (Fig. 14). Varying
the prior weight placed on Bg(U] = U;) shows that our results
are robust to the specific value chosen (S Appendix, Fig. S1). Our
inferential framework could be extended to include learning this
prior, but we leave this extension for future work (61).
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Fig. 3. The Game Generator. Instead of a single game repeated many times, the Game Generator creates an infinitude of social choices where the number
of actions available to the decision making player, the costs, and benefits to each affected player are sampled probabilistically. The Game Generator is
parameterized by a set of players (colored circles), distributions over the number of costs, benefits, and actions composed in a template. Each sample
(Gy, ..., Gn) from the Game Generator is a unique social decision making problem. The rotated player on the left (e.g., player i, in Gq) is the decision maker, and
they are given a set of options that depend on the sampled values of b and c. Each sampled decision includes the action “Pay 0” where no costs or benefits are

distributed to any player.
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Fig. 4. The Bayesian Reciprocator learns about others from sparse data
during interaction, leading to robust cooperation in the Game Generator. (A)
Intragenerational belief updating. In each case, a probe Bayesian Recipro-
cator was matched with another Bayesian Reciprocator (Left), an Altruistic
player (Center), or a Selfish player (Right), and beliefs were monitored for
20 interactions. After each interaction, the beliefs of the probe player were
measured. Dark solid points show an average of over 1,000 trials. Faint traces
are single belief trajectories. In all cases, beliefs move from the prior (0
pairwise interactions) toward correct beliefs but at different rates. Bayesian
Reciprocator quickly learns when paired with a Selfish player but has a
harder time distinguishing Bayesian Reciprocator from a Altruistic player. (B-
E) Intergeneration evolutionary steady state of the population in the repeated
Game Generator under the Moran process while varying (B) the length of the
repeated game in each generation or (C) the probability of an error during
action selection. The size of each bar color is the steady state proportion
of the population with the player type of that color. (D) The abundance of
Bayesian Reciprocator in the steady state population for different amounts
of repetition and action error. Above the red line, the Bayesian Reciprocator
proportion is greater than 0.5 of the steady-state population. (E) Population
payoffs for different error rates and game lengths. Higher abundance of the
Bayesian Reciprocator yields higher payoffs due to cooperation.

However, computing the likelihood in Eq. 3 requires 7 to know
the beliefs that j has about i, Bj;. These beliefs are also private

and must be inferred. Prior work on BToM analyzed a setting
where an external third-party observer is watching the behavior
of one or more agents and does not consider the challenge of
multiple agents, each with a BToM interacting with and learning
about each other. A recursive formulation of theory of mind is
needed as the target of inference is making its own inferences.
In children, the capacity for these higher-level inferences about
what others think emerges early and has been shown to influence
social behavior and moral judgment (62, 63).

Most importantly for cooperation, without a recursive theory
of mind, players will not be able to distinguish a justified with-
holding of cooperation (e.g., a reciprocal response to defection)
from unjustified selfish withholding of cooperation. The differ-
ence between these two actions depends on an inference about
the actor’s beliefs: was the actor a Bayesian Reciprocator but with
the belief that the recipient is not, was the actor simply a Selfish
player who always acts selfishly, or an Altruistic player who tried

https://doi.org/10.1073/pnas.2400993122

to cooperate but withheld cooperation due to an action error?
Each of these hypotheses could explain the ambiguous action to
a variable degree and must be quantified correctly.

One approach to a recursive theory of mind is to have each
player model each other’s beliefs in an (in)finite regress: each
player must track “what Alice knows, Bob knows Alice knows...”
and so on (64). In practice, this kind of regress is approximated
with a finite number (K) of nested models that ground out in
nonlearning (K = 0) model (65-67). However, as approximate
models, they lead to unstable and divergent beliefs and require
great computational cost (68). Even when possible, the number of
models (and hence belief updates) required grows exponentially.
Alice would need to model Bob, modeling Carl, modeling Alice,
and so on.

Instead, we develop a method for efficiently tracking recursive
beliefs when players believe they have common knowledge that
they observed the same interaction as other players (69-71).
The basic intuition is that instead of tracking a hierarchy of
beliefs, the Bayesian Reciprocator tracks each subset of common
knowledge (72, 73). Under this formulation, Alice’s model of
Bob’s beliefs is identical to the beliefs an external player in a
“view from nowhere” would form had they observed what was
observed by both Alice and Bob (74). Formally, the likelihood
of j’s action as perceived by player 7 in Eq. 3 can be written as

P(ﬂﬂ U, G, le.) = P(a’|Uj, G, B}m)’ where B}ﬂi denotes the
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Fig. 5. The Bayesian Reciprocator learns from observation and robustly
cooperates even when players only interact once. (A) Intragenerational belief
updating in a population of 10 players where all players observe each other’s
actions. Beliefs are shown after each observation for each player type:
Bayesian Reciprocator (Left), Altruistic (Center), or Selfish (Right). Dark solid
points show an average of over 1,000 trials. Faint traces are single belief
trajectories. (B) Intergeneration evolutionary steady state (Moran process) of
the population in the one-shot Game Generator while varying the probability
(w) that each action is observed by all players or only those involved in the
interaction (1 — w). Players only interact with each other once. The size of
each colored bar is the proportion of the population with the player of that
color. (C) The Bayesian Reciprocator is robust to action errors in this one-
shot setting, but higher error rates require a greater fraction of interactions
observable by all. (D) In contrast, the Bayesian Reciprocator is more sensitive
to perception errors. (E-G) Population payoffs for the scenarios (B-D) show
that a higher abundance of the Bayesian Reciprocator leads to higher levels
of cooperation.
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Fig. 6. The Bayesian Reciprocator outcompetes leading automata strategies and expands the range of environments where cooperation is possible in
simultaneous (A-D) and sequential (E-H) IPD. We analyzed the most prevalent strategy with and without the Bayesian Reciprocator while varying two pairs of
parameters: the probability of action error and game length (A4, B, £, and F) and the benefit/cost ratio and game length (C, D, G, and H). Without the Bayesian
Reciprocator present, WSLS (yellow; A and C) and Forgiver (gray; E and G) are the most prevalent strategies in the simultaneous and sequential IPD, respectively.
However, AlID (red) was most prevalent for all but the lowest error rates and highest benefit/cost ratios. When the Bayesian Reciprocator was added to the
evolutionary simulation, it outcompetes the automata strategies for most parameter pairs (blue) in both the simultaneous (B and D) and sequential (F and H)
versions of the IPD. Furthermore, the Bayesian Reciprocator enables cooperation for much higher error rates and lower benefit/cost ratios than the automata

strategies alone.

belief state conditioned on the common observations of players i
and j up to time z.

Because jNi = iNj, players do not need to represent a growing
hierarchy of recursively nested models. This approach to belief
representation greatly simplifies reasoning about social knowl-
edge when a large group of players observe new information.
Instead of updating what each player believes individually (and
what they believe others believe and so on), this representation
allows players to directly update the beliefs of each group of
players all at once. See SI Appendix, Supplementary Methods for
algorithmic details on the implementation of this belief update.

Fig. 1 shows an example of how two Bayesian Reciprocator
update their beliefs in a simple two-action game where players
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sequentially choose whether or not (give or keep) to pay a
small cost to provide a larger gain to another player over
two-time steps. Players combine their prior beliefs (Fig. 1A4)
with the information a new observation provides about the
utility function that generated that behavior (Fig. 1 C and D).
Simple reciprocal behavior emerges from the utility function of
the Bayesian Reciprocator (Eq. 2) and the learning dynamics
of Bayesian inference (Eq. 3). If Alice does not cooperate,
Bob’s belief about her utility function shifts to highly weight
the Selfish type, which leads to Bob withholding cooperation.
Finally, Fig. 2 shows how these inferences are combined into
a learning loop that continues for the duration of a repeated
game.
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Fig. 7. The Bayesian Reciprocator widens the range of parameters that enable cooperation in the simultaneous (A-D) and sequential (E-H) IPD. The population
of players is the same as Fig. 6. Heatmaps show the average population payoff at steady state (normalized between 0 and 1). Without the Bayesian Reciprocator,
cooperation (darker gray regions that correspond to higher population payoffs) is limited to long game lengths, low probabilities of action errors, and high
benefit/cost ratios (A, C, £, and G). With the Bayesian Reciprocator, cooperation emerges across a wider range of environmental parameters and the cooperation
that does occur is closer to the maximum, i.e., the gray regions are darker (B, D, F, and H).
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The Game Generator

To test the generality of the Bayesian Reciprocator across
many game types, we developed a game theoretic setting called
the Game Generator. The Game Generator is a probabilistic
generative process that uses a general resource allocation template
to create an infinite number of distinct cooperation challenges.
The template is shown in Fig. 3. In each sample, a donor
is selected who can then opt to transfer resources to one or
more receivers. These transfers may be costly or costless. Many
familiar games, such as the prisoner’s dilemma, altruistic giving
games where players can give up some of their own welfare to
help another person, allocation games where players can show
favoritism in choosing who should receive an indivisible resource,
and even moral dilemmas where players bear no personal costs
themselves but decide outcomes for groups of others are unified
under this sampling process.

The Game Generator can create repeated games by having the
same pair of players play a number of samples together (game
length). Other parameters such as the average costs (C), benefits
(B), number of actions per sample, probability of action error (€),
action observability (w), and observation error are all controllable
knobs. No two interactions sampled from the Game Generator
are ever exactly alike. Actions are randomly ordered and lack
semantic labels, so all decisions and inferences must be made in
terms of the sampled payoffs (costs and benefits). Due to variation
in both the payoffs and the number of actions of each sampled
game, traditional automata-based strategies cannot be directly
applied to the interactions sampled from the Game Generator.
See Fig. 3 and SI Appendix for the details of the generative process
and some example generated games.

Results

Direct Reciprocity in the Game Generator. We first study the
evolution of cooperation through direct reciprocity in the Game
Generator environment with the Bayesian Reciprocator, Selfish,
and Altruistic players. To study direct reciprocity, we used the
Game Generator to generate varied repeated interactions between
players where interaction between players are private (w0 = 0),
i.e., only observable to the actor and the player(s) that could have
received a resource.

To better understand the behavior of the Bayesian Recipro-
cator in the context of multiple repetitions, we first analyzed
the dynamics of belief during a repeated interaction. Fig. 44
shows the average beliefs formed by a Bayesian Reciprocator
after 20 repeated interactions with either another Bayesian
Reciprocator, an Altruistic player, and a Selfish player. Over the
course of the repeated interactions, the Bayesian Reciprocator’s
beliefs update to correctly distinguish between other Bayesian
Reciprocator, Altruistic, and Selfish players. Importantly, the
Bayesian Reciprocator identifies Selfish players rapidly (often
after just a few interactions), which is necessary for conditional
cooperation. The Bayesian Reciprocator learns to distinguish
Aleruistic players from the Bayesian Reciprocator more slowly
as both are initially cooperative. These belief updates happen
within a generation.

Next, we looked at evolutionary success across generations by
characterizing the steady state distribution of players under the
Moran process (75, 76). Under the Moran process, a mutant
player type can invade if it is neutral or even at a disadvantage
(77). These invasions act as stepping stones between player types
and can cause cycles in the population composition (78, 79).
Thus, we show the relative abundances of the different strategies
at steady state rather than only presenting the most prevalent
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player type. Experiments were carried out in a population of 10
players, with a small probability of action errors (¢ = 0.025),
and parameters B = 5, C = 1. See SI Appendix for details of the
steady state distribution calculations.

Fig. 4B shows the steady state distribution as a function of
the game length, the number of samples from Game Generator
played by each pair of players. When the game length in each
generation is short (<3), the Selfish player outcompetes the
Bayesian Reciprocator and the Altruistic player. As the probability
of repetition increases (>3), the Bayesian Reciprocator becomes
the most prevalent strategy in the population. We next analyzed
the evolutionary steady state while varying the probability of
action error with a game length of nine rounds. Fig. 4C shows
that the Bayesian Reciprocator is robust to noise and outcompetes
the Selfish player when the error rate is <0.3.

The higher the probability of an action error, the longer the
game length required for the Bayesian Reciprocator to enable
cooperation (Fig. 4D). Higher error rates are challenging because
they slow down learning, and thus, longer game lengths are
needed to identify the types of others. Fig. 4F shows that the
Bayesian Reciprocator is actually finding a cooperative equilib-
rium that improves the joint payoffs of the population compared
to the Selfish player. In the parameter regions where the Bayesian
Reciprocator is the most prevalent strategy in equilibrium, the
average population payoffs are also high. Together, these results
show that the Bayesian Reciprocator forms directly reciprocal
relationships leading to the evolution of cooperation in noisy
and variable environments.

Finally, we also show that the Bayesian Reciprocator also
outperforms players with more sophisticated utility functions
in the repeated Game Generator. In addition to the Selfish
and Altruistic players, the model also outcompetes an inequality
averse player that tries to keep its cumulative payoffs balanced
with its partners (80). See S/ Appendix, Fig. S2 for results and
implementation details.

Indirect Reciprocity in the Game Generator. Having established
the evolution of cooperation under conditions favoring direct
reciprocity, we next studied the evolution of cooperation in the
Game Generator but where players were never matched with
the same player more than once (game length = 1), making it
impossible for a player to form a directly reciprocal relationship
with another. Instead, we varied the probability of observation
(w > 0), which allows players to observe the behavior of others
even when they are not involved in the decision themselves.
This setting allows us to study the evolution of cooperation
through indirect reciprocity. The Bayesian Reciprocator requires
no modification to its structure or parameters for this setting.
Mathematically, inference from one’s own interactions or from
observing the interactions of others is just conditioning on a
different source of data.

As before, we first study the intragenerational learning
dynamics in a population of 10 players with four Bayesian
Reciprocator three Selfish players and three Altruistic players.
Players interact with each other no more than once, but all
interactions are observable by all other players (0 = 1). Fig. 54
shows that Bayesian Reciprocator rapidly learns the true type of
each player from sparse observations. In all cases, beliefs move
from the initial prior (0 observations) toward the correct belief.
When comparing the dynamics of learning here to learning
from repeated interactions (Fig. 44), learning from observation
enables the Bayesian Reciprocator to more rapidly distinguish
the Bayesian Reciprocator and Altruistic players since Altruistic
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players will be observed unconditionally cooperating with known
Selfish players.

We next studied the evolution of cooperation through indirect
reciprocity in the Game Generator environment with Bayesian
Reciprocator, Selfish, and Altruistic players. All experiments were
carried out with the same parameters as before, but we set game
length to 1 and varied observability (w). As expected, when the
probability of observation was low, the Selfish player was the most
prevalent strategy as there is no consequence for uncooperative
behavior, and players cannot reliably learn the types of others. As
the probability of observation grows, the Bayesian Reciprocator
becomes the most prevalent player in the population (Fig. 5B).
This transition from Selfish to Bayesian Reciprocator was
accompanied by a jump in the population payoffs, showing that
the Bayesian Reciprocator enables the evolution of cooperation
through indirect reciprocity.

Next, we assessed the robustness of indirect reciprocity via
Bayesian Reciprocator under action and observation errors.
Unlike action errors, where a more cooperative choice might be
stochastically replaced with a less cooperative choice (accident),
observation errors are challenging because players will occasion-
ally be exposed to different data and form divergent beliefs even
though each player will believe they have seen the same data
as others (15, 81). Fig. 5C shows the model is highly robust
to action errors. While higher action error rates require a great
percentage of observations to be observable to all, cooperation can
still be sustained with an error rate of over 0.20. For observation
errors, Fig. 5D shows that indirect reciprocity driven by the
Bayesian Reciprocator is robust to small amounts of observation
errors (for @ = 1). When the perception error rate reaches
0.075 and above, the Selfish player outcompetes all others at
steady-state. Fig. 5 F and G show that as long as the Bayesian
Reciprocator is the most prevalent player at steady state in both
error models, the cooperation rate (as measured by total payoff)
stays high.

Finally, we show that without modification, the model can
integrate repeated interactions and observability, allowing for a
mixture of direct and indirect reciprocity. This is a more realistic
setting for human cooperation where both of these forces are
often present simultaneously. S7 Appendix, Fig. S3A shows the
abundance of the Bayesian Reciprocator in the steady state while
varying both the probability of observation and the game length.
Empirically, we find a roughly linear relationship between game
length and observability in the Game Generator environment,
suggesting that both direct and indirect reciprocity can mutually
support each other (SI Appendix, Fig. S3B). However, they may
do so in ways that are independent.

IPD. While the Bayesian Reciprocator enables the emergence of
robust direct and indirect reciprocity in the Game Generator, in
that setting, we could not directly compare agents against classic
automata strategies. The classical automata require two action
games where the cooperative and noncooperative actions are
labeled (unlike in the dynamic Game Generator environment).
Therefore, we investigated the performance of the Bayesian
Reciprocator in the sequential and simultaneous IPD where there
are already well-established successful strategies. Specifically, we
compared Bayesian Reciprocator to AlID, AlIC, TFT (82),
generous TFT (GTFT) (7), WSLS (8), Forgiver (24), and against
the more recently developed extortion strategies (83, 84) (see S/
Appendix for details on these automata).

In the simultaneous variant of the IPD, both players choose
whether to cooperate or defect, and only after both players have
chosen are the actions observed and payoffs received. In the
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sequential variant of the IPD, players choose sequentially, and
actions are observed as soon as they are made. We choose to
study both the sequential and simultaneous versions of the IPD
because a different set of automata succeed in each variant. In the
simultaneous IPD, WSLS is most prevalent, but in the sequential
IPD, Forgiver is most prevalent (24).

We ask whether the Bayesian Reciprocator can allow coop-
eration to evolve in parameter regions where AllD outcompetes
the cooperative automata. To do so, we first search through
parameter space for cooperative equilibria when the Bayesian
Reciprocator is not included in the simulation. Then, we do the
same search but with the Bayesian Reciprocator. We first varied
execution errors along with game length in the simultaneous
(Fig. 6 A and B) and sequential (Fig. 6 £ and F) IPD. When
the error rate is high or the game length is short, AllD is
most prevalent (shown in red) whether or not the Bayesian
Reciprocator was included. When both the error rate is low
and the game length is long, both the automata strategies alone
(WSLS in simultaneous IPD; yellow, Forgiver in sequential
IPD; gray) and together with the Bayesian Reciprocator yield
cooperative equilibria. But for higher error rates or shorter game
lengths, the presence of the Bayesian Reciprocator is required for
a cooperative equilibrium to emerge (blue).

We find similar results when varying the benefit/cost ratio
in the simultaneous (Fig. 6 C and D) and sequential (Fig. 6
G and H) IPD. For the lowest benefit/cost ratios and shortest
game lengths, AlID is the most prevalent strategy (red). For
high benefit/cost ratios, both the automata strategies alone
(WSLS in simultaneous IPD; yellow, Forgiver in sequential
IPD; gray) and with the Bayesian Reciprocator yield cooperative
equilibria. However, for an intermediate benefit/cost ratio closer
to one, the presence of the Bayesian Reciprocator is required
for a cooperative equilibrium to emerge (blue). For nearly
all parameter pairs tested, when the Bayesian Reciprocator is
included with the automata strategies, the most prevalent strategy
at steady state is the Bayesian Reciprocator (Fig. 6 B, D, F,
and H).

In each case, for parameter regions where the Bayesian
Reciprocator is the most prevalent player, the average population
payoff (i.e., cooperation rates) is higher (Fig. 7). ST Appendix,
Fig. S4 shows the relative abundance of each player type at steady
state. Although some automata are present in small amounts, the
Bayesian Reciprocator accounts for the majority of the time spent
in a cooperative state. Finally, these same results hold when we
allow for all deterministic memory-1 strategies to compete against
the Bayesian Reciprocator (24). The Bayesian Reciprocator leads
to more cooperative behavior and thus higher populations payoffs
for a wider range of parameter settings (S/ Appendix, Fig. S5) and
at steady-state is the most prevalent strategy when the population
is cooperating (S/ Appendix, Fig. S6).

Taken together, these results show that in the IPD, the
Bayesian Reciprocator expands the range of cooperative equilibria
compared to the leading automata strategies. This was seen in
both low benefit/cost and high error rate environments, which
might be particularly important for cooperation to get off the
ground. Finally, while different cooperative automata were most
prevalent at steady state in the simultaneous and sequential IPD,
the exact same parameterization of the Bayesian Reciprocator
was consistently the most prevalent strategy across both variants
of the IPD. Unlike the existing strategies that have been hand-
engineered for cooperation in the IPD over many decades, the
Bayesian Reciprocator is a general cooperator that excels even in
the special case of the IPD in addition to the more general Game
Generator.
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Discussion

We introduced the Bayesian Reciprocator, a model for the evolu-
tion of cooperation based on insights from artificial intelligence
and the computational study of human social cognition. The
Bayesian Reciprocator recursively values the rewards of others
proportional to its belief that others are cooperating in the same
way. These beliefs are updated through interaction with and
observation of others by a recursive and Bayesian model of
theory of mind. We demonstrated the value of this approach
in an environment that is much richer than games typically
studied, the Game Generator, where every decision is a sample
from a generative model so that players never make the same
decision twice, and decisions and judgments must be made in
terms of their outcomes and alternatives. Using evolutionary
simulations, we show that the Bayesian Reciprocator enables the
evolution of cooperation in the Game Generator both through
direct reciprocity when interactions are repeated but private
and through indirect reciprocity when interactions are one-
shot but publicly observable. Finally, the Bayesian Reciprocator
outperformed existing automata strategies and expanded the
range of cooperative equilibria when applied in the context of
the IPD game.

Together, these results show the power of a cognitively sophis-
ticated strategy in general—and theory of mind in particular—
for enabling robust cooperation. Deeper still, these studies may
explain how the benefits of cooperation may have driven the
evolution and emergence of theory of mind. Theory of mind
explains how and why general and robust cooperation can
evolve—butalso, cooperation might explain how and why theory
of mind evolved and became so important in human cognition.
In the spirit of the “cognitive niche” and “cultural niche” accounts
of human evolutionary success (28, 85), social reasoning abilities
such as theory of mind may coevolve with other aspects of
distinctively human sociality: capacities for general and flexible
cooperation, learning socially from others, and cumulative
culture (86). Our simulations quantify how sophisticated social
reasoning of this type delivers cooperative benefits above and
beyond what can be achieved by less cognitively flexible agents—
and thus can outcompete simpler strategies evolutionarily.

The Bayesian Reciprocator has a number of properties desir-
able for conditional cooperation that emerge from the recursively
dependent utility function and the ability for players to infer
the latent utility functions of others from their actions. First,
the model operates with a sophisticated and realistic reputation
system: cooperators punish (by withholding cooperation) players
who have previously defected on others, reward punishers by
cooperating with players who have punished selfish players, and
reward or punish those who do or do not punish nonpunishers
(17, 87). Second, by developing a utility-based model, our
framework is sensitive to the payoffs and structure of the game
itself. This allows for generalization beyond the Game Generator
to extended interactions across space and time such as video
games, human-algorithm interactions, or even human-robot
interactions (49, 51, 88-90). Last, unlike previous reputation
systems such as the leading eight (14), the Bayesian Reciprocator
operates with graded evaluations: the more observations of a
player cooperating or defecting on others, the more evidence
the player has that the player is a cooperator (or altruistic) or
is selfish (and should be punished). An emergent feature of this
gradedness is that as the Bayesian Reciprocator is more sure it
is interacting with another Bayesian Reciprocator (beliefs closer
to 1), it is willing to pay a higher relative price for a collective

benefit (26, 91).
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Compared to prior approaches, the gradedness of the Bayesian
Reciprocator is key to its robustness to execution errors. While the
cooperative automata strategies fully break down once the error
rate exceeds 0.1, the Bayesian Reciprocator still outcompetes
all others at 2 to 3 times that error rate. This works because
the Bayesian Reciprocator reasons probabilistically about errors
and treats them as a standard statistical learning problem where
evidence is accumulated over many time steps. The extent
that a noncooperative action should be treated as the player’s
true intention versus explained away as an error is calibrated
automatically by a probabilistic update. Consequently, when the
Bayesian Reciprocator becomes more and more sure (belief closer
to 1) that another player is of the same type, they will also be
more likely to forgive errors. Similar to how humans treat the
importance of first impressions, the Bayesian Reciprocator is less
likely to forgive errors early on than later on when beliefs are
already converged. This type of commonsense social reasoning is
not present in any of the forgiveness mechanisms of the behavioral
automata. GTFT forgives defection with a fixed probability,
Forgiver always forgives, and WSLS forgives through an error
correction mechanism that also makes it less successful at resisting
defectors (WSLS cooperates 50% of the time with AlID).

We are not the first to consider the evolution of utility-
based preferences for cooperation. However, prior works required
that utility functions are publicly observable (92) or assortment
was required in the matching process to reach a cooperative
equilibrium (42). These prior models did not require inferential
machinery or develop mechanisms for reciprocity. Finally,
compared to other type-based cooperators, there is no need to
inventasignaling system that enables similarity-based conditional
cooperation such as tags or “green-beards” (93-95). For the
Bayesian Reciprocator, the utility function is both a signal for
the conditional cooperation of others and the causal determinant
of a player’s behavior. As such, the behavior of the Bayesian
Reciprocator is a signal of conditional cooperation that cannot be
faked or imitated without adopting it. The Bayesian Reciprocator
could leverage tags or other public features that are diagnostic for
type to speed up cooperation by setting the initial prior. By only
affecting the prior, a false signaler that “looks like” a cooperator
would be quickly detected as a cheater after defecting just a few
times.

Future work can leverage the modeling framework we have
introduced here to study many key features of human coopera-
tion. For instance, explicit forms of punishment, where a player
pays a cost to reduce the payoffs of others as retribution or as
a teaching signal (96, 97), could be modeled by changing the
sign of the other player’s payoffs in Eq. 2. Other relevant features
for structuring cooperation, such as fairness, partner choice, or
rules, could also be considered in our framework by extending the
Game Generator and modifying the utility function (98-101).
While in this work, we studied players with a fixed prior, the
prior could be learned hierarchically both during interactions
with multiple partners or inherited culturally across generations
(29, 61). Sophisticated structure learners could learn and pass
on not just the weighting over types but even discover the types
themselves. Nonparametric Bayesian inference (102) or program
learning (103) could be used to implicitly represent infinite player
types. These flexible priors allow the sophistication of represented
types to grow dynamically with the complexity of the data.

While the Bayesian Reciprocator represents only one account
of how human-like cooperation could operate and arise stably,
its principles, mathematical foundations, and computational
structures could be generally useful in building more cooperative
Al Ideally, an Al that operates in the human world will have a
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human-like theory of mind that can be leveraged to understand,
learn from, and cooperate with people. As Al is increasingly mak-
ing and advising on decisions in areas ranging from autonomous
cars to public policy, these systems will confront many of the
same social challenges studied here: recognizing the cooperative
intent (or lack thereof) of others, inferring reputation from
interaction and observation, reciprocating proportionately, and
more (90, 104, 105). These issues arise when Al systems need to
understand the dynamics of cooperation between human agents,
as well as in new forms of cooperation that could emerge or be
engineered in human—Al interactions or AI-Al interactions. In
each case, agents may not share the same goals and will need
to both reason about each others’ intentions and figure out
whom to cooperate with in order to achieve mutual benefit.
More broadly, the capacity to reason about human intentions
and utility functions may be essential in aligning Al systems with
human values (106, 107). Our analysis of recursive and adaptively
weighted utility functions and Bayesian theory of mind inferences
underlying general patterns of cooperation could be a central part
of this alignment landscape.

They hypothesized that a player with theory of mind could
resist extortion and other manipulations and ultimately conclude,
“it is exactly evolution, on the hugely larger canvas of DNA-
based life, that ultimately has produced X, the player with the
mind.” In this work, we realize this hypothesis by developing the
Bayesian Reciprocator, a model for the evolution of cooperation
that leverages theory of mind for a distinct cooperative advantage.
Quantifying this advantage in evolutionary game theoretic terms
shows why humans, the most sophisticated cooperators, also have
the most sophisticated machinery for understanding the minds
of others.

Materials and Methods

Bayesian Reciprocator. In Algorithm 1, we show the pseudocode for the
Bayesian Reciprocator belief updates. The core belief update happens on lines
2210 30. On line 28, internal models of other player types are updated with the
latest observation. For example, if m = TFT, the state of the TFT automata will be
updated with the latest action. The simulations utilize additional optimizations
that have been omitted for clarity but are present in the source code. We take
advantage ofthefactthat observersubsetsforma partially ordered set. Thisallows
the Bayesian Reciprocator to initialize the observer subsets only when they occur
in the game and initialize their beliefs from the next larger subset when it is
available. These optimizations reduce computation and memory consumption
when simulating a population of players.

When interactions are private, the number of observer subsets scales linearly
with the number of players because the Bayesian Reciprocator must store the
beliefs that each pair of players have about each other. When all interactions
are fully observable, they still scale linearly since the Bayesian Reciprocator only
needs a single observer subset that corresponds to the joint beliefs held by
all. When observations are partially observable, the Bayesian Reciprocator must
track each unique observer subset that occurs. In the worst case, every unique
combination occurs. This worst case would require representing a powerset of
the observers and require 2V observer subsets.

Game Generator. The generative process for the Game Generator is defined as
follows. To create a sample G;, we first sample the number of players (including
the decision maker) and the number of choice types (including "do nothing”).
The number of players is 2 or 3 with equal probability in the evolutionary
analyses and 2 in the intragenerational learning experiments shown for the
intragenerational studied shown in Figs. 44 and 5A.

The number of choice types is Poisson(2). For each choice type, we sample
a cost ¢ ~ Poisson(C) so that costs are sometimes zero and a benefit b ~
Exponential(B). For each ¢, b, and non-decision-making player, we create a
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Algorithm 1 Bayesian Reciprocator learning loop for ¢

B=[i,injink,injnk,...]

Ll A

M =1[i,inj,ink,injNk,..]

ot

6: for s € B do
7: B, = prior
M, = [Selfish, Altruistic, ...]

10: t =0

11: while ¢t < game length do
12:

13: actor, R, A,0 + G*

14:
15: if i = actor then
16: a* = argmax,c 4 Ri(a)+
E]‘eo Rj(a)Binj(U = Bayesian Reciprocator)
17: else
18: a" =0
19:
20: a = G".observe(a*, G.)
21:
22: for s € B do
23: if s == subset(O) and actor € s then
24: for m € M, do
25:
26: Bs[m] = Bs[m] * m.likelihood(a, G*, G.)
27:
28: m.update(a, G*, G.)
29:
30: Bs[m] = Bs[m]/ ZmeMﬁ Bs[m)]
31:

32: t=t+1

choice option where the decision-maker pays c to give the non-decision-making
player ¢ + b. This ensures that the benefit is always larger than the cost. Finally,
a do nothing choice option is added where all payoffs are 0. Each interaction has
a unique probability of a "trembling hand” where with probability €, a different
action is taken instead of the action chosen. Each interaction is observed by all
players with probability @ and is otherwise only observed by those interacting
in G;. Repeated interactions are generated by having the same set of players
sample a new G; after each decision.

Automata Strategies. The memory-1 automata strategies can be defined by a
vector for four numbers: (pec, Peg: Pder Pdd): 1-€- the probability of cooperating
after both players cooperated, the player cooperated and the opponent
defected, player defected, and the opponent cooperated, the player defected and
the opponent defected. AlID is (0, 0, 0, 0), AllCis (1, 1,1, 1), TFTis (1,0, 1, 0),
WSLSis (1,0,0, 1),GTFTis (1, 0.66, 1, 0.66), Forgiveris (1,0, 1, 1), and Extort2
is (0.85,0.5,0.35,0) (7, 8, 24, 83). The specific values for GTFT were computed
as optimal for IPD with B = 3 and C = 1 (7). Extort2 is an extortion strategy
with y = 2(83). AlIC, TFT, WSLS, GTFT, and Forgiver play cooperate on the first
round. AlID and Extort2 play defect on the first round.

Evolutionary Analysis of the Game Generator. We simulate an evolutionary
selection process to compute the steady-state abundance of each strategy at
equilibrium using the finite population Moran Process. In the Moran process,
in each generation, one player is chosen at random, and that player chooses
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another player (inclusive of itself) with probability proportional to its cumulative
payoff and then either copies that player's type or mutates into a random player
type with probability & (4, 75).

The evolutionary analysis of the Game Generator was done in a population
of N = 10 players with mutation rate 6 = 0.001 and selection strength
s = 2. Results were robust to the choice of these parameters. We first calculate
the expected cumulative payoff to each type for each composition of player
types. So if there are M = 3 player types (Bayesian Reciprocator, Selfish,
Altruistic) in a population of 10, we compute the expected cumulative payoffs for
each of the population compositions (9,1,0), (8,2,0),...,(1,0,9), where
the number in each position is the number of players of that type in the
population. Expected payoffs were calculated empirically by averaging over 200
simulations.

For each composition, we take a softmax of the expected cumulative payoffs
controlled by the selection strength (s) to get the probability that each player
type will be copied (109). For a composition i out of C total compositions, the
probability of choosing type t is:

P oSX 7}
M= Z%*O e$><77:,’.71 !

where 7] is the expected cumulative payoff of type t in composition .
Expected cumulative payoffs were calculated empirically by averaging over
200 simulations. Finally, pisa C x C transition matrix where each element p; ;
is the probability of transitioning from population composition i to population
composition jin a single time step. Let b be the player type that increased from
i — jand let d be the player type that decreased from i — j. Then:
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populations of player types. Let x* be the steady state frequency of population
composition i. To find the steady state of this process, we compute a distribution
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and selection strength s = 1 following the calculations of refs. 109 and
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The steady state x* is the eigenvector corresponding to the largest eigenvalue
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