
Particles 2
Wehave the tools, we have the talent!

—Winston Zeddemore, Ghostbusters (1984)

Before we can build something, we need to be conversant with our tools. This chapterintroduces the fundamentals of programming agent-based models with NetLogo, after
which we will explore a simple toy model called “Particle World.”
In this chapter and the next, we’ll stick to agent-based models and leave aside purely

mathematical formulations. For many people, simulating explicit agents provides greater
intuition thanmathematicalmodels based on seemingly sterile equations.There’s something
visceral about seeing embodied agents moving around on your screen, which may explain
some of the popularity of agent-based modeling. Many people also find the task of writing
down models as equations intimidating. This is a hurdle we will have to vault, but not just
yet. Hopefully, the intuitions gained from simulating social systems will provide a scaffold
for understanding the equations. If you’re raring to start writing down equations, sit tight
and enjoy the ride for now. We’ll get there soon enough.
This book is predicated on the idea of learning by doing. Therefore, I will not spend

too much time on general principles of coding or modeling. Rather, I will try to give you
just enough information to get going right away with coding and analyzing some simple
models, and then, later, somemore complicated models.There will be lots to learn from the
models we study, and I want to get us started as soon as possible. In the next two sections,
I will introduce some of the basics of NetLogo and some general principles of computer
programming. If you are already broadly familiar with both NetLogo and programming,
feel free to skip ahead to section 2.3.



Patches

•  Stationary
•  One per location

Turtles

•  Mobile
•  Can die and reproduce
•  Can be networked
•  Can occupy patches

•  Connections between turtles
•  Can be directed or undirected

Links

Figure 2.1 The building blocks of a NetLogo model: patches, turtles, and links.

2.1 NetLogo Basics

If you have not done so already, you should download NetLogo onto your machine, which
you can do for free here:

https://ccl.northwestern.edu/netlogo/

As noted, this is not a book on how to use NetLogo. You should make sure to spend suffi-
cient time on your own getting familiar with its workings.1 First and foremost, you should
work through the tutorials included in the NetLogo User’s Manual. Doing this will give you
a sense of howNetLogo works. In addition, the NetLogoModels Library comes loaded with
lots of well-documented sample models that will give you a good sense of the program’s
possibilities. Finally, the NetLogo Dictionary at the end of the User’s Manual contains infor-
mation about all theNetLogo primitives—the built-in procedures thatmake codingmodels
in NetLogo so efficient. This dictionary is a valuable resource. When I work in NetLogo, I
refer to it often.

2.1.1 Patches, Turtles, and Links

NetLogo has three important building blocks for agent-basedmodels that have many useful
built-in properties: patches, turtles, and links (Figure 2.1). Patches are the default spatial
organization in NetLogo: a set of discrete square cells laid out in a two-dimensional rectan-
gular grid. Each patch has a fixed, unique location, but otherwise can be assigned arbitrary
properties. Indeed, patches can be used as agents themselves in a model, for example when
there are a fixed number of agents in stable locations.2 More typically, patches are used to
represent properties of the agents’ environment.
When there is need for agents with a more versatile set of properties than those afforded

by patches—such as the ability to move, die, reproduce, or form nodes in a network—
NetLogo has a useful object class called turtles. Turtles will be used to represent agents

1If you are using a language other thanNetLogo, with or without an explicit modeling library, make
sure you are comfortable with it and able to create a simulated world with simple agents in it.
2Patches can easily be used to simulate one- and two-dimensional cellular automata.

24 Chapter 2



A B

Figure 2.2 (A) W. Grey Walter introduces his cybernetic tortoise to a mother and her child.
(B) Logo commands to draw a rectangle with the turtle.

in most of the simulations explored in this book. Turtles are spatially embodied and have a
position in continuous space (which overlaps with the discrete space on which the patches
exist) as well as a directional heading, though one may also ignore these pieces of locational
information if they are not important to a model’s dynamics.
Why are these objects called turtles? The term is an homage to the neuroscientist and

roboticist W. GreyWalter,3 who created a simple, programmable, mobile robot in the 1950s
called a “tortoise.” This idea was inspirational to the creators of the Logo programming
language—developed in the 1960s—which allowed a user to issue commands to move and
draw with a small triangular figure on a computer monitor.4 The commands were similar to
those given to Walter’s tortoise, and the green triangle may have also given the impression
of a turtle (many screens in those days were monochromatic and produced only green on
black; see Figure 2.2). NetLogo uses many of the same commands to move its turtles as did
the original Logo language; its agents are named in Logo’s honor.
Finally, NetLogo conveniently allows turtles to be connected with the class of objects

called links. More will be said about the use of links when we discuss network models in
chapter 9.

2.1.2 NetLogo Tabs

The NetLogo window has three tabs: Interface, Info, and Code (see Figure 2.5). A Net-
Logo file contains information about all three tabs, and their union is properly considered
the model code. The Interface tab displays the model visualizations and graphs, buttons
that execute commands for initializing and running the model, and controllers (sliders and
switches) for any variables that will be varied in the analysis of the model. You should make
sure you are familiar with how to create, delete, and manipulate these aspects. The Inter-
face tab allows for real-time inspection of the model output as well as rapid parameter

3Walter worked within the then-trendy discipline of cybernetics, which combined insights from
psychology, neuroscience, and the nascent field of computer science. Cybernetics can be viewed as a
precursor to the modern fields of artificial intelligence and cognitive science.
4Biographical note: Logo was the first language I ever programmed in, as a grade-schooler back in

the optimistic heyday of the 1980s. Perhaps this helps to explain my affinity for NetLogo. For a history
of Logo, see Solomon et al. (2020).



manipulation. The tab is also where the Settings window can be accessed, which allows
the user to update the size and shape of the patch grid.
The Info tab is essentially a template for extensive documentation of themodel and asso-

ciated code. Nothing in this tab directly affects the run of themodel itself. Rather, it is a place
to describe the model for the benefit of others who may be using the model (including your
future self, whowill likely benefit from a refresher). In general, I will ignore this tab through-
out the book. However, the library of example models included in the NetLogo download
is very helpfully documented using the Info tab.
Finally, the Code tab is where the instructions for the model’s operation are coded. All

the code that will be presented throughout this book is entered in this tab. One thing worth
noting is that calling this the “code” tab is somewhat misleading, because the interface is
really also part of the code. For example, we will often instantiate global variables in the
Interface tab using sliders and switches. How this works will become clear with practice.

2.2 Programming Basics

Once upon a time, a person could obtain an advanced degree in the social or biological
sciences without ever typing a line of computer code. Those days are over, and rightly so.
There are many skills a scientist can hone, and no one can do everything (at least not well).
We create stronger sciences if specialization is allowed to flourish. Nevertheless, program-
ming is simply too valuable a skill to leave entirely to specialists—gaining at least some
programming experience is essential for the modern scientist. There are currently many,
many resources available to help you learn to code, and it is likely you have already been
exposed to some of these. As such, I will generally assume some familiarity with the con-
ceptual language of computer programming. However, for novice programmers, it’s also
important to make sure that some of the foundational concepts are understood. For this
reason, I present below a very short primer on some key programming concepts with exam-
ples of how they can be instantiated in NetLogo. Readers comfortable with programming
can probably skip ahead to the next section.

Variables

Variables are the secret weapons that give mathematics its power—the ability to perform
computations on an object without knowing the value of that object. In computing, variables
often represent numbers, but they can also represent character strings, Boolean (true/false)
values, or agents, as well as lists or sets of these things. In some languages, like Java or C++,
when declaring a new variable you are required to specify what type of object will be rep-
resented, be it an integer, a floating point number, or a Boolean array. In other languages,
including interpreted languages like Python or NetLogo, you are not required to do this,
because the interpreter will automatically figure out what sort of variable it is dealing with.
When we write mathematical equations, we usually represent variables with Latin or

Greek letters, like this:
y= 0.1x− 1

In this case, the variable y is a linear function of the variable x. Perhaps x represents the time
you invest in the Skee-Ball game at your local penny arcade, and y represents the value of
the knickknacks you can purchase with the tickets you win (the negative intercept is due
to the entry cost for the arcade). We represent each value with a single character, because

26 Chapter 2



only philistines use multiple letters to represent a variable (excluding subscripts) in purely
mathematical formulations. However, in programming we can use almost any set of char-
acters we want, excluding spaces. And we should. We want our variable names to be both
succinct and easily identifiable. Code can be confusing, so let’s lessen the confusion by using
names that help us figure out what the variable refers to when we show our code to others
or to our future selves.
NetLogo uses the equals sign (=) exclusively as a logical test (to check if quantities are

equal), and instead uses the function set to change the value of a variable. So, in NetLogo,
the code to assign the current value of y would look like this:

NetLogo
code 2.1set value-win (0.1 * money-invested) - 1

Variables are the heart and soul of any model. They represent the quantities we need to
describe our study systems, and they represent the features of those systemswhose dynamics
we are interested in understanding. In an agent-based model, we often distinguish between
several categories of variable: global variables, agent variables, and local variables. Global
variables have a single value regardless of how they are accessed. These can be fixed for the
duration of a simulation (such as the initial number of agents) or they can change over time
(such as the current number of agents in a model with birth and death events), but their
values apply globally in the simulation. Agent variables are values held by each member of
a class of agents, with values that can vary between agents. For example, each agent might
keep track of its group identity and current resource level. Global and agent variables are
sometimes collectively described as a model’s parameters. Within a block of code, it is also
sometimes useful to define a local variable. This is a temporary marker that is used only
within a particular block of code and then automatically deleted.

Functions

A function, also called a procedure, is a label for a set of commands that are run together
whenever the function is called. A function may also take arguments, which are values
that are assigned to variables within the function. For example, an addition function called
add(x, y) might take the two arguments x and y and add them together, so that the
output of add(2, 3) would be 5. Functions need not return any values, but they can,
and when they do the output of a function can in turn be assigned to some other variable.
In NetLogo, functions that return a value are also called reporters.
NetLogo has a number of built-in values and functions, called primitives.These are part of

what makes NetLogo so powerful, because they make it easy to program the computations
that make the dynamics of a model possible. For example, the primitive reporter color
returns a turtle’s color, while the primitive functioncreate-turtles takes as arguments
a number and a code block. The function then creates the given number of turtles, each of
which executes the commands in the code block upon being created.There are many useful
NetLogo primitives, all of which are described in the dictionary at the end of the NetLogo
User’s Manual.5 We will be using many functions, both custom and primitive, throughout
this book.

5For a useful introduction to NetLogo primitives, see here: https://ccl.northwestern.edu/netlogo
/bind/article/what-is-a-primitive.html.



Loops

Looping is one of the major capabilities that make computers so amazing: the ability to
perform the same computation over and over and over at great speed. Loops can take several
forms, but are often of one of two varieties: for-loops perform a computation over a fixed
set of values, and while-loops perform a computation for as long as some condition is met.
For example, a while-loop in NetLogo can be instantiated like this:

NetLogo
code 2.2 while [any? other turtles-here]

[forward 1]
]

The code block above contains several NetLogo primitives—in fact, every word is a prim-
itive except for the number 1. When a turtle executes this code block, it calls the function
any?, which takes as an argument an agentset (a set of agents) and returns false if the set is
empty and true if the set contains at least one agent.6 The agentset is defined by the primi-
tive function turtles-here, which returns the set of all agents on the same patch as the
caller—the code object that initiates the function call (generally either an agent or the global
observer). The function other takes an agentset and returns a copy of the same agentset
excluding the caller. Thus, the set of brackets on the top line returns true if there are any
other turtles on the same patch as the turtle executing the code, and false otherwise. If true,
the turtle will move forward one unit (the width of a patch) in the direction it is currently
heading. It will then check the conditional again to see if there are still any other turtles on
its current patch, and it will keep moving forward until there are not. In this way, the turtle
moves away from others, behaving in a somewhat antisocial manner.
NetLogo additionally has a very special sort of looping command that allows the user to

loop over a set of agents in a random order. This is done with the primitive procedure ask.
The randomization is key, as we usually don’t want all of our agents to be scheduled in the
same order every time step, because this could create undesirable artifacts in at least some
cases. Most agent-based modeling libraries allow for a similar random scheduling of agents’
behaviors. NetLogo is a very polite language, so we don’t tell agents what to do, we ask them.
The ask procedure allows us to create a list of instructions that each agent will then execute
one by one. For example, suppose we had a population of agents located at various positions
on a two-dimensional space and facing a particular direction, and we wanted each agent to
turn 45 degrees to the right and then move forward one unit. We could do this with the
following code:

NetLogo
code 2.3 ask agents [

right 45
forward 1

]

6There is a convention among NetLogo coders that Boolean variables and functions that return
Booleans have names that end with a question mark. This is not required, as NetLogo treats the
question mark as a regular character, but it is often useful.

28 Chapter 2



If agents all start at the center of the space and this command is their only behavior, looping
over this ask command will yield our population of agents spiraling outward.

Conditional statements

Conditional statements are another major capability that makes computers awesome. Con-
tingent rules allow for code to be executed only when specific conditions are met. NetLogo
provides the function if, which takes a Boolean argument and executes a series of com-
mands if and only if the argument is true. If the argument is false, nothing happens. The
command ifelse is similar, but it involves two sets of commands, executing the first if
the argument is true and the second if it is false. For example, consider a scenario in which
agents have an energy reserve, stored as a variable calledenergy, andwewant the agents to
turn slightly to the right and move forward only if they have more than one unit of energy,
otherwise they run some custom function called forage that we can imagine involves
some other meaningful behavior. We can achieve this with the following code:

NetLogo
code 2.4ask agents [

ifelse energy > 1
[

right 45
forward 1

]
[

forage
]

]

More recent versions ofNetLogo also allowifelse to operate as a “switch” function,which
allows the user to delineate an arbitrary number of commands with each to be run under
some condition. Building models of behavior very often involves constructing sets of deci-
sion rules for how agents will behave under different circumstances. Conditional statements
are a key part of making this happen.

Object-oriented programming

Early programs were simple lists of commands, performing sequential operations on stored
variables one line at a time. And indeed, many programs today are still of this type. In these
programs, variables typically refer to values or sets of values (such as a matrix of integers).
Object-oriented programming allows for somethingmore nuanced.Theuser can define an
arbitrarily large number of object classes, each of which characterizes new types of variables
for the program to work with. Each class can store its own variables and procedures, and all
instantiations of that class (that is, the objects) will possess these variables and procedures.
This type of programming lends itself very well to agent-based modeling, because it is

easy to define a class of agents with the desired properties. NetLogo uses a special type of
object-oriented programming called agent-oriented programming, which differs primar-
ily in that commands can be written as instructions directly to the agent. This allows for
what many consider a more natural style of programming for agent-based models. We saw
this above in our use of the ask command. A common problem faced by novice NetLogo



programmers is a “confusion of levels,” in which a set of code is written at one level—for
example, at the level of the observer (the perspective of you, the coder)—but is placed in
the code in such a manner that it will be interpreted at another level—e.g., by a turtle. This
usually generates an error, but if you’re on the lookout for it, it is easily handled.
Throughpractice, the elements of programming—both those common tomost languages

and those specific to NetLogo—will gradually become more and more like second nature.

2.3 Particle World

Now that we’ve introduced our tools, let’s get on with seeing how we can put them to work.
We are going to build a very simple agent-based model. The goal is to get you comfortable
with the tools of model building, so for now we won’t worry about how well the model
represents reality. Instead, we are going to start with a toy model of a make-believe world:
Particle World.
This ignoring of reality may appear to run counter to what I said in the previous chapter

about howmodels, by analogy, help us to understand the real world. However, wemust learn
to stand before we can run. To do this, we need to engage in a bit of play. Throughout the
animal kingdom, young animals (humans certainly included) play with simplified versions
of the objects or scenarios theywill eventually need to take seriously as they grow into adults.
Juvenile meerkats are given injured scorpions with their stingers removed by their mothers
in order to become familiarized with the tasty but deadly prey. Young children in the West
might play “family” or “cops and robbers” to become familiar with social roles in a low-risk
context. Similarly, our first “model” is a sort of playpen, in which agent dynamics can be
explored entirely within the world of the model without us worrying about how the model
maps onto anything in the real world. These agents will be simple dots moving around on
your computer screen. Of course, humans are natural pattern finders and storytellers, so
you may not be able to stop yourself from imposing a narrative onto our model. I certainly
couldn’t.

2.3.1 The Story of Particle World

Particle World is a magical land inhabited by strange but simple creatures called particles,
who require no sleep or food, only space to move around. And move they do, constantly.
The space they live on is a torus, a donut-like surface, so a lone particle could happily move
around forever.The torus (Figure 2.3) is a commonly used surface in agent-basedmodeling.
We will represent space as a toroidal grid, sometimes referred to as a grid with periodic
boundaries. This means that if you move past the rightmost edge, you end up on the left
side, and if you move past the topmost edge, you end up at the bottom. If you’ve ever played
a game of Pac-Man you will be familiar with this concept—when Pac-Man exits the maze
through an opening on one side of the maze, he emerges on the opposite side. The grid is
toroidal rather than a true torus because each cell or patch is presumed to be a perfect square
with an area equal to that of all the other cells.
Particles vary in their propensity to wander around in new directions. Particle World

psychologists have determined that the various cultural groups of Particle World exhibit
varying levels of the personality trait they call “whimsy,” which is the extent to which indi-
viduals fail to stick to their current directional heading (Figure 2.4).The opposite of whimsy
is stubbornness. A stubborn particle heading due north at one moment in time will still be
heading north in the following moment, barring a collision. A more whimsical particle, on

30 Chapter 2



Figure 2.3 A torus.

θ

x

y

Figure 2.4 A depiction of a particle. The particle has position, (x, y), and a directional heading, θ .
Its heading and position are updated on every time step.

the other hand, may have drifted some during the same time interval, so that in themoment
following its northerly heading, it might be heading in amore easterly or westerly direction.
Things get hairy if a particle bumps into another particle. Keeping track of where they

are heading takes a lot of concentration, which is broken by the collision. After they collide,
both particles get confused and forget in which direction they were heading, and so each
sets off in a new, randomly chosen direction.



Particle World physicians have become concerned about the long-term health con-
sequences of these collisions. As such, they are particularly interested in how often the
collisions occur. Some regions of Particle World are more densely populated than others,
and they suspect that higher densities lead to more collisions. But how many more? Par-
ticle World scientists also know that individuals in some areas tend to be very whimsical,
while individuals in other areas are more stubborn. They wonder: How does the whimsy of
a region affect the number of collisions observed in that region?
We can make Particle World a reality and get to work answering these questions. Let’s

get coding!

2.4 Coding the Model

Now that we’ve got a good idea of how the model should work, let’s get to coding it in Net-
Logo. For many of us, this is the fun part. I’ve provided a working version of the code in
the repository,7 titled particles.nlogo, and you may wish to simply examine that. How-
ever, there is also value in coding something up from scratch. For most of this book, I will
not work through the NetLogo code in detail, but will instead focus on the algorithms and
organizational aspects of the model code (this is also in service of readers who may wish to
use other programming languages). This is our first time working through an agent-based
model, however, and I want to make sure you understand what goes into coding up a new
agent-based model.
Open up a new NetLogo model. You will be faced with a blank Interface window

(Figure 2.5). We’ll start by adding a few buttons and sliders for some of the commands
and variables we know we’ll need (you should be familiar with how to do this after going
through the NetLogo tutorials). We’ll need setup and go buttons, which will each corre-
spond to procedures in our code. We’ll also add sliders for the following global parameters:
num-particles, whimsy, and speed. Before we head over to the Code window, we’ll
increase the size of our grid by clicking on the Settings button. The default grid in NetLogo
is a 33× 33 square. We’ll increase the size to 101× 101 to give our agents lots of space in
which to move around (Figure 2.6).
With that accomplished, we can head over to the Code tab to start coding the model. If

you look through my code, you’ll notice throughout that I have added comments on many
lines using semicolons. NetLogo ignores anything on a line that comes after a semicolon
(two semicolons are often used as a convention, but one will work just as well). In general,
documenting your code is a good habit to get into. It helps other people read and make
sense of your code. Don’t care about other people being able to understand your code?Well,
consider one specific other person: your future self. You may know exactly how your code
works now, but many a programmer has returned to code they haven’t seen in months or
years and found themselves baffled. Comment!
Moving on, NetLogo has the interesting feature that variables introduced in the Interface

tab are treated as declared global variables, and so they do not need to be reintroduced in
the Code window. In fact, there’s only one other global variable we need to declare, and that
is our outcome variable, collisions. Global variables are traditionally declared at the
very top of the code, and so we can write the following:

7See the Preface for the repository URL.

32 Chapter 2



Figure 2.5 Blank Interface window in NetLogo.

Figure 2.6 Interface window setting up for the Particle World model.



NetLogo
code 2.5 globals [

collisions
]

Next, we’ll write the code for the function to initialize the model, the setup procedure,
using the primitive function to to introduce the definition of a new procedure.The setup
procedure must accomplish a few things.The first and last commands are standard and will
be part of most NetLogo programs. clear-all resets all variables to their default initial
values and removes all turtles and links from the simulation. reset-ticks resets the
tick counter to zero and initializes all plots. These two commands are NetLogo primitives
and are described in the NetLogo User’s Manual. The first command after clear-all
is aesthetic: we’ll ensure that our agents take on the default shape of an arrow, which will
allow us to easily see their directional headings.8 We can then create the agents (as turtles).
We make each agent green (or whatever color you like), make it larger to help us see the
agents more easily, set it in a random location, and give it a random heading. The primitive
reporters random-xcor and random-ycor are extremely useful, because each returns
a random floating point number from the allowable range of spatial coordinates along the
x or y axis, respectively. This means that you don’t need to update the code if the size of the
world is changed. After creating the agents, we will set our collisions counter to zero. After
this procedure is run, all of our agents will exist in our simulated world, but they won’t have
done anything yet.

NetLogo
code 2.6 to setup

clear-all ;;clear/reset all variables
;;make the turtles look like arrows
set-default-shape turtles "default"
;;make a bunch of green turtles
create-turtles num-particles [

set color green
set size 2 ;;make them easier to see
setxy random-xcor random-ycor ;;give them a random location
set heading random 360 ;;give them a random heading

]
set collisions 0 ;;initialize collisions at zero
reset-ticks ;;set the clock to zero

end

Next, we’ll code the model dynamics. These are laid out in the go procedure, which you
should have set up to be called by a “forever” button in the Interface tab. This means that
the procedure is run over and over until the button is pressed again or until some specified
stopping condition is met. When this procedure is called, it will cause all of the agents to
turn, move, and possibly collide (thereby updating our collision counter). We do this using

8The arrow is actually NetLogo’s default shape for turtles, so declaring this isn’t strictly necessary.
However, doing this helps us to be conscious of the fact that other shapes are possible.

34 Chapter 2



the command ask turtles, which takes as its argument a block of code that each turtle,
in randomorder, will execute. First, each agent will turn to the right and then to the left, with
the angle of each turn consisting of an integer randomly drawn from a uniform distribution
between zero and (whimsy−1).9 The agent will then move forward a distance specified by
speed. I personally like the speed to be quite slow (around 0.02 or less) so that collisions
are easy to visually observe and agents’ behavior approximates smooth movement through
space.
After an agentmoves, we need to determine if it has collidedwith another agent. NetLogo

has some neat tools formaking this happen.The conditional statement here that determines
a collision is if count turtles in-radius 1 > 1. The agent checks whether
there are any other agents whose distance to the focal agent—the agent that we’re focus-
ing on at the moment—is less than or equal to one unit, indicating that they are touching.
(Formore information about any of the primitive commands used here and elsewhere in this
book, see theNetLogoDictionary.) If this condition ismet, all of those agents withwhich the
focal agent has now collided, as well as the focal agent itself, are asked to set their headings
to a new random direction. Each of these agents then moves forward a small amount. Why
do we do this? It’s worth experimenting with removing this command (you can “comment
it out” by adding semicolons at the front of the line) to see what happens. Agents will con-
tinuously jostle around, because they will remain near one another and are just as likely to
move closer together as to move farther apart. Having eachmove a bit forward substantially
reduces this possibility, making for a much more “natural” collision. It is debatable whether
this sort of hack is reasonable in a model of behavior, and as a modeler that is the sort of
decision youmay often be faced with.The procedure ends with the command tick, which
advances the simulation clock and updates the plots.

NetLogo
code 2.7to go

ask turtles [
;;turn a random amount
right random whimsy
left random whimsy
forward speed ;;move forward

;; if at least 1 other turtle near, set new headings
if count turtles in-radius 1 > 1 [

ask turtles in-radius 1 [
set heading random 360
fd 0.1

]
set collisions (collisions + 1)

]
]
tick

end

9Note that this will emphatically not produce a uniform distribution between negative and positive
whimsy, but rather a binomial distribution bounded in±whimsy. See Box 2.2: Correlated Random
Walks and the Central Limit Theorem.



That is all the code you need to make the model work. Play around with it and see what
kind of behavior you observe, fiddling with the various sliders in the Interface tab.We’ll talk
more about how to analyze the model below. Before we move on, however, it’s worth saying
something about codemodularity. We have put all the model’s code in just two procedures:
setup and go. It may seem economical to reduce the number of procedures in a program,
but in fact the opposite is often preferable. By havingmany small procedures, code becomes
more modular. Modular code is usually easier to read and debug, and code snippets are
more likely to be directly transferable to another piece of software. Below, the go procedure
is rewritten to be more modular, supported by newly created supporting procedures:move
and bounce-turtle.

NetLogo
code 2.8 to go

ask turtles [
move
bounce-turtle

]
tick

end

to move
right random whimsy
left random whimsy
forward speed

end

to bounce-turtle
if count turtles in-radius 1 > 1 [

ask turtles in-radius 1 [
set heading random 360
fd 0.1

]
set collisions (collisions + 1)

]
end

Now that the model dynamics are coded, you can observe the simulation unfold in the
Interface tab, watching the agents move around and collide. Wheeee! Visualization is useful
when studying dynamicmodels, as watching those dynamics unfold under different param-
eter assumptions can give you intuition that is otherwise difficult to come by merely from
reading the algorithmicmodel description or inspecting summary statistics. But summarize
we must if we are to produce more than merely qualitative reports of the model behavior.
We’ll start very simply, by plotting the number of collisions as a function of time. This sort
of plot is very easy to set up in NetLogo, which is yet another reason it’s a nice platform for
studying simulation models.
Back in the Interface tab, use the plus button or right-click to create a new plot.This is, by

default, a plot of how one or more values change over time. Since we have already defined a
variable to record the number of collisions, you can simply tell NetLogo to plot this variable.
Filling in the window as shown in Figure 2.7 should do the trick. In addition to creating a
plot, it may be useful to add a Monitor that reports the exact number of collisions at each
time step. You can do this by means very similar to those you used to add the plot. You

36 Chapter 2



Figure 2.7 Adding a plot of the collisions as a function of time.

should end up with something that looks similar to what is depicted in Figure 2.8. You will
observe that the number of collisions tends to increase linearly with time.Thus, you can use
the rate of collisions per unit time to compare different scenarios of whimsy and population
density—doing this is left as an exercise.
You now have a simulation model to take to the scientists of Particle World to help them

study how the different population densities and cultural amounts of whimsy influence the
rate of collisions each group experiences. You might even be able to use your model to
suggest some interventions! For example, you might observe that while both population
density and whimsy influence the number of collisions, the effect of density tends to domi-
nate (Figure 2.9). This suggests that restricting density might be more practical than trying
to change the (presumably strongly culturally and/or genetically imbued) degree of whimsy
in each group.
TheParticleWorldmodel is very simple and perhaps a little silly. However, the basic skills

involved in putting it together constitute much of what will be needed to build models we
can use to ask deeper questions about social behavior. I recommend you spend some time
playing with the model parameters and seeing what kinds of outcomes you can get. Think
about some other assumptions you could make about your agents, and try to code them.
Get creative. Playing around to see what you can make your model do is a valuable habit
to cultivate when designing and building models. I encourage you to play as much as you
like, and I have provided some suggestions in the Exploration section of this chapter. In the
next chapter, we’ll study a slightly more serious model as well as a more serious approach to
analyzing it.



Figure 2.8 The Interface of the Particle World model in NetLogo.

0

100

200

300

400

0 2500 5000 7500 10000
time

co
lli

si
on

s

whimsy
0
180

whimsy
0
180

0

2000

4000

6000

8000

10000

0 2500 5000 7500 10000
time

co
lli

si
on

s

N = 50 N = 200

Figure 2.9 The cumulative number of collisions for several runs of the Particle World model
over 10,000 time steps, for different values of the population size (N) and whimsy. In all cases,
speed = 0.02.



You may notice that I have been a little vague about exactly how Particle World works. I
could give the written description above to a few modelers to code up, and, without access
to the NetLogo code, wemight see slight or even prominent differences between their inter-
pretations. This is a problem. If we are going to do serious science with models, we need to
be able to talk with precision about how models work and to communicate that precision
to others so that they can understand and reproduce our work. We therefore need to know
how to talk about the components of a model—any model—and how to effectively write up
a model description. In the next section, I’ll discuss how to describe and communicate a
model design, using Particle World as a case study.

2.5 The Components of a Model

Models are representations of a slice of reality, of some system of interest. A model decom-
poses the system into a simplified set of parts, properties, and relationships. As discussed in
the previous chapter, there is no one right way to decompose a system. Rather, the value of a
decomposition depends on how useful it is in explaining or illuminating some phenomenon
or set of phenomena.Throughout this book, we will consider many systems involving social
behavior and explore some representative decompositions. In doing so, we should always
keep in mind this question: What are we assuming, and what are we excluding from those
assumptions?
When it comes to presenting a model to others, our task is to help them to answer this

question as easily and precisely as possible.Model descriptions should therefore be clear and
transparent. In particular, they should include clear statements about (1) what the parts and
properties of the model are, (2) how the model is instantiated and initialized, (3) how the
dynamics of the model are scheduled, and (4) how the outcomes of the model simulations
are measured or computed.

2.5.1 Parts and Properties

We need to lay out all the components of a model when describing it. What is being repre-
sented, and what is the nature of that representation? If we are talking about an agent-based
model, what are the agents like? What properties do they have? What behaviors do they
exhibit? If the agents interact, how are those interactions structured? What is the nature of
their environment, and what are its properties?
The Particle World model consists of agents and their rather sparse environment. Let’s

start with the environment. The “real” Particle World might contain rocks and trees, lakes
and rivers. However, we have made the simplification (which for now I will assert is reason-
able) that particlesmove on large stretches of fairly flat land. Sowe’ll ignore those geographic
features and assume a fairly featureless landscape, and we’ll model the topology of Particle
World as a continuous square spacewith periodic boundaries. Let’s unpackwhat thatmeans.
The world is square. For a spatially explicit simulation, a square is one of the simplest land-
scapes to program, analyze, and visualize.10 As such, a square is one of the most commonly
used spatial arrangements, particularlywhen amodeler doesn’t have specific domain knowl-
edge that would make the square a poor choice. The space is continuous, which means that

10A line is even simpler. However, when considering agents moving around and colliding, a line
makes collisions unavoidable, while a 3-D space is unnecessarily complicated (not to mention more
difficult to visualize). A 2-D space is best for our purposes.



agents can travel arbitrary distances in arbitrary directions. A commonly used alternative is
a discrete grid, in which cells or patches are arranged in a regular pattern in the space and
an agent’s location is defined by its cell. Finally, and perhaps most notably for the novice
modeler, the boundaries of Particle World are periodic, or toroidal (Figure 2.3). An agent
that moves down past the lower bound of the space will emerge at the top, and an agent that
moves right past the rightmost bound of the space will emerge at the left edge. Periodic or
toroidal boundaries are commonly used in spatially explicit agent-based models. This may
seem strange, given that almost no earthly environments are toruses. However, toroidal sur-
faces help us to avoid tricky artifacts like agents getting stuck in the corners of the grid, or
asymmetries where agents near the edges have fewer spatial neighbors. Finally, we’ll have
to specify the size of our square, denoting the length of one side as L in arbitrary units. The
spatial length unit is arbitrary, but it serves to determine the meaning of things like speed
and distance in the model, and in some models this unit may correspond to real lengths or
distances. In NetLogo, this is the width of a patch.
Onto this space we’ll place our agents, whose number we will specify with one of our

global parameters.The population size will also determine the population density if we hold
the size of the space constant. Each agent has only two intrinsic properties: its location and
its directional heading.That is, each agent will keep track of where it is and where it is head-
ing.These need not be the only agent properties. For example, we discussed the importance
of the speed at which the particles move. However, for our analysis, we are interested in
speed as a property of the cultural group, so we will code speed as a property of the environ-
ment that governs themovements of all the agents in the population.We similarly discussed
whimsy as a property that varied primarily between cultural groups, so wewill likewise code
whimsy as a global variable (that is, a property of the entire simulation) rather than as a
property of the individual agents.
Finally, let’s briefly talk about visualization. For reasons that will hopefully become clear,

it is often useful to visualize themodel dynamics in detail. Dynamic visualization isn’t always
practical for some model designs or some programming language choices—the ease with
which dynamic visualizations are possible is a strength of NetLogo. When it is possible, it
can help the modeler gain intuition about the system they are studying, and even observe
outcomes they otherwise wouldn’t think to test for. Whenmaking a visualization, we’ll have
to make some arbitrary choices concerning the aesthetic appearance of our agents and their
world, including agents’ color and shape. These aspects are often purely cosmetic, because
they do not affect the model’s behavior or its outcomes, and such cosmetic aspects are typi-
cally not reported in formal descriptions for simulationmodels. Indeed, these aspects of the
code are often bypassedwhen running batches of simulations to reduce computing time. For
the ParticleWorldmodel, I have chosen to represent agents as green circles on a black back-
ground, but you can choose any appearance you like. Now that we know the components of
the model, we need to specify how they are arranged.

2.5.2 Initialization

You cannot tell someone how to get somewhere if you don’t know where they are start-
ing from. Similarly, you cannot fully understand the dynamics or end states of a model if
you don’t know what things were like at the start. What’s going on when a model simu-
lation begins? How many agents are there, and what are their properties? Where are they
in their environment and in relation to each other? What does the environment look like?
Research on nonlinear dynamics has shown that in complex, interconnected systems, long-
term dynamics can be highly sensitive to initial conditions. Although many social systems

40 Chapter 2



are also quite resilient, the social systems we are interested in are often complex and subject
to feedback processes that can amplify small variation. It is therefore vital to answer these
questions about initialization thoroughly.
At the beginning of a Particle World simulation, the spatial environment is estab-

lished and the agents are placed upon it. Recall that agents have only two uniquely held
properties—location and heading—and so each agent will keep track of its own values for
these variables (NetLogo does this automatically for turtles). How should they be initially
assigned? There are lots of possibilities. For example, all the agents might start in the same
location, or be evenly spaced in a grid pattern, or be arranged in a circle, or in the shape of
a T-rex, or be placed on the grid in locations representing actual places in the real world.
Similar concerns apply to their directional headings. If we don’t have good reasons to choose
one of these, or if we have a good reason to think it doesn’t matter, we might as well draw
both locations and headings at random from a uniform distribution of choices, and this is
what we have done. That is, num-particles agents are created and placed at random x
and y locations on the square grid. Our agents are ready to go!

2.5.3 Dynamics

Once we know what the parts of the model are and how they are initialized, we need to
know how they change. In other words, how does the state of the model system update
from one moment to the next? We usually think of time as progressing continuously, and
this sort of continuous change can bemodeled to some extent bymathematical formulations
using infinitesimal time increments, as with coupled differential equations. In this book,
we will generally stick to modeling time as advancing in discrete increments, though these
increments can be arbitrarily small. This assumption also fits the nature of computational
representation, which is naturally discrete. In NetLogo, discrete temporal increments are
usually called “ticks,” and I will use this term interchangeably with the more widely used
phrase “time steps.” Time steps can represent short units of time like a second or a day, or
longer units like a year or a reproductive generation.The description of a model’s dynamics
typically involves what happens in one time step of a model simulation.
You should carefully consider the specifics of what happens during a time step and in

what order those things occur. This ordering of the computations performed during each
time step is called scheduling. Choices about scheduling can be consequential. For exam-
ple, all agents might calculate their next move before any actions are taken, so that each
agent is responding to the exact same environment. In this case, the ordering in which
agents make their decisions probably doesn’t matter. Alternatively, each agent could cal-
culate and execute their move in one fell swoop, so that each agent potentially responds to
the actions of the agents who are scheduled before it. In this case, the order in which agents
are scheduled can matter, and it is usually wise to randomize the order in which agents are
“stepped” at each tick11 (NetLogo’sask procedure does this automatically).Whether agents
respond synchronously (all responding to the same environment) or asynchronously (one
at a time) can affect how the dynamics of the model unfold, though the qualitative results
of most models are usually robust to both styles of scheduling.12 A related issue concerns

11For example, Turner and Smaldino (2018) studied how stochastic decisions in initialization and
scheduling could dramatically affect the dynamics of a single simulation run in a model of opinion
dynamics.
12An interesting debate on this issue can be observed by reading Nowak and May (1992), Huber-

man and Glance (1993), and Nowak et al. (1994) in sequence, which deal with a spatial model for



the scheduling of multiple actions within a single time step. Should all the agents complete
one action before any agent can move to the next action? Or should each agent complete all
actions before the next agent is scheduled?There is no right answer to this question without
knowing the details of the system being modeled, but the modeler should be mindful that
different answers can lead to different outcomes. Finally, specification of amodel’s dynamics
includes any stopping conditions for the model—that is, when a simulation is considered
finished. Sometimes this will be after a fixed number of time steps, while in other cases it
may be whenever a particular system state is reached (such as an equilibrium). In the former
case, the number of time steps should be justified. For example, it may reflect sufficient time
such that all observed simulations have reached a roughly stable state.
For each time step of the Particle World model, each agent, in a random order, turns,

moves, and potentially collides. If the agent is stubborn, it will not deviate much from its
previous heading when it moves. If it is more whimsical, it will turn quite a bit more. More
precisely, the variable whimsy denotes an agent’s maximum turning angle. Each agent will
adjust its heading at each time step by first turning to the right an amount randomly cho-
sen from a uniform distribution between zero and whimsy degrees. It then draws another
number at random from the same distribution and turns that many degrees to the left.Thus,
more whimsy translates into more frequent wide turns and less correlated random walks,
while less whimsy translates into smaller turning angles and more highly correlated ran-
dom walks, such that at the limit of zero whimsy, each agent simply travels in a straight
line. After turning, the agent will move forward speed units in the direction of its cur-
rent heading (ending up on the other side of the space if it moves across the edge of the
grid). If no other agents are located where the agent has moved to, the agent is finished for
the current time step. However, if another agent is sufficiently close to the agent in ques-
tion (within one spatial unit), then a collision occurs. Recall that when an agent collides
with another, it gets confused and heads off in a new direction. So, when two agents collide,
they both receive new directional headings chosen at random from a uniform distribution
between 0 and 359 degrees. A time step is completed when all agents have performed these
actions.

2.5.4 Outcomes

The design of a model is driven by the questions we are asking about our system, and the
process of modeling must therefore include deciding how the model’s outcomes will be
quantified and how themodel’s behavior under different conditionswill be characterized for
comparison. In other words, we need to know about our outcomemeasures. Sometimes this
is as easy as counting the proportion of agents in the population exhibiting some trait. Other
times more computation will be necessary, as when we calculate the structural properties of
an evolving network.
In the Particle World model, we are concerned with the number of collisions that occur

over the course of the simulation, as a function of both whimsy and num-particles.
That is, our outcome is the number of collisions that occur over some standardized length
of time. We measured this by creating a variable that is initialized to zero at the beginning
of a simulation and is then incremented by one every time a collision occurs.

the evolution of cooperation that initially used synchronous updating. Some results were robust to a
change to asynchronous updating, others were not.

42 Chapter 2



2.6 Describing a Model

If you are sharing your model with others, as in a scientific paper or even in a blog post, you
should describe it well. Make sure you’ve included details about the parts and properties,
how the model is initialized, how the dynamics work, and any outcome measures you are
collecting. A careful reader who is a competent coder and familiar with models—but not
necessarily familiar with yourmodel—should be able to replicate your model in a program-
ming language of their choice, based solely on your written description. That is, the model
description should be clear and complete, and should minimize ambiguity.13 This is really
important. The lessons one can draw from a model come directly from understanding how
the model’s assumptions lead to the consequences highlighted by the modeler. If a model is
described poorly, the reader won’t be able to discern exactly how it works, and any results
of the model’s analysis border on useless.
Writing up a clear description of a complicated model is a skill that requires practice to

hone. There are many good suggestions in the ODD protocol, widely used in ecology, for
describing agent-based models (Grimm et al., 2010, 2020). The protocol suggests a three-
stage strategy of model description: the Overview (the “story” of the model), the Design
(the computations involved in the model’s dynamics), and the Details (all of the model’s
algorithmic details, sometimes relegated to an appendix). I am hesitant to recommend elab-
orate all-purpose protocols for describing research conducted across disciplines, but I quite
like the general approach of an iterated description with increasing detail given at each
stage. Nascent modelers often forgo the Overview stage, preferring to plunge ahead with
the formal mathematical or computational details of the model. This is usually a mistake
for all but the simplest models. A model is a representation of something else. When we
make assumptions about a model system, we are mapping them onto our representation
of the corresponding real-world system. However, as noted, a model simplifies—it omits
details, and it even introduces falsehoods in the service of simplicity (for example, the false-
hood that there are only two types of people). So, in order to make sense of how the model
details map onto the real-world system, it helps to explain the model system verbally. The
subsequently presented formal details can then be used to clarify how the model works
without requiring the reader to simultaneously figure out the underlying analogy to the real
world.
Because my intent in this book is pedagogical, I will often introduce models in a more

narrative style than I would use were I to describe them in a scholarly article written for
experts. In order to demonstrate more clearly what I am talking about, however, I have
presented a complete formal description of the Particle World model in Box 2.1.This infor-
mation is redundant with what is described above, but it illustrates how a model might
be described in a publication.14 The box also uses the convention of labeling parameters
using single letters rather than the names actually used in the computer code. I find this
approach easier to read, and it offers continuity between mathematical and agent-based
modeling.

13For very complicated models, such as those used in systems science or artificial life, it may not be
practical for every presentation of themodel to include a full description. Even in these cases, however,
that description should be accessible somewhere, and that somewhere should be directly referenced in
all write-ups.
14For recent examples of how I recommend describing agent-based models of much greater

complexity, see Smaldino and Turner (2022), Smaldino et al. (2019a), and Smaldino et al. (2019c).



BOX 2.1: Particle World Description

This model features a population of spatially embodied agents moving through con-
tinuous space, each using a correlated walk. When agents collide, they become
confused, and each sets off in a new direction. We run each model simulation for
10,000 time steps and compare the number of collisions during that time.

Initialization
A population ofN agents is initialized with each agent placed at a random real-valued
locations on an L× L gridwith periodic boundaries. Each agent ihas a direction head-
ing θi, which is initially chosen at random from a uniform distribution of integers
[0, 359]. Each agent is fully defined by its location and directional heading. Other
model parameters are the whimsy, w, which determines the turning angle agents use
on each time step, and the speed, s, which determines the size of the step they take
whenmoving. Finally, we keep track of the cumulative number of collisions over time,
C(t).

Dynamics
At each time step, each agent, in a random order, turns, moves, and collides. An agent
first turns by adding to its direction heading an integer value that is randomly drawn
from a uniform distribution in [0, w]. The agent then subtracts a newly drawn value
from the same distribution from its directional heading. In other words, its new direc-
tional heading is θi+ ε, where ε is randomly drawn from a binomial distribution
bounded in [−w,w]. The agent then moves s units forward. If there are any other
agents with a position within one unit of the focal agent’s new location (defined by the
Euclidean distance between the centers of each agent), a collision occurs between the
focal agent and all of these other nearby agents. In this case, all of the agents involved
in the collision update their heading to a new value randomly selected from the uni-
form distribution [0, 359]. Each of the involved agents thenmoves forward 0.1 spatial
units in order to move away from the site of the collision and avoid cycles of perpet-
ual collision. If a collision occurs, the cumulative collision counterC(t) is incremented
by one.

BOX 2.2: Correlated RandomWalks and the Central LimitTheorem

In our ParticleWorldmodel, the agents use a kind of correlated randomwalk, which
just means that an agent’s directional heading at time t+ 1 is correlated with its head-
ing at time t. We implemented this by having agents turn a random amount to the
right and then a random amount to the left. Both of these turning angles are drawn
from a uniform distribution bounded between 0 and whimsy. So, the resulting dis-
tribution of agent turning angles (their right turn minus their left turn) should be
uniform as well, right?
Actually, it’s not. To see that it’s not, we can plot the distribution of the resulting

turning angles. I wrote a simple script that repeatedly generates two random numbers
between 0 and 90, and then subtracts the second number from the first, which is

44 Chapter 2



0

10

20

30

–50 0 50
angle

co
un

t
A

0

500

1000

1500

2000

–100 –50 0 50 100
angle

co
un

t

B

0

500

1000

1500

–100 0 100
angle

co
un

t

C

Figure 2.10 (A) Distribution of 1,000 turning angles generated by subtracting one random
value from the other, where both random values are drawn from U(0, 90). (B) The same,
but with 105 turning angles generated. (C) Summing more numbers better approximates a
normal distribution. Here 105 turning angles were generated by adding two positive ran-
dom values together and then subtracting two positive random values from that sum, with
each value drawn from U(0, 90).

exactly what our agents do if we assume whimsy= 90◦. I repeated this random pro-
cess a thousand times and then plotted the distribution of the sums generated, shown
in Figure 2.10A.There seem to be a lot more values close to zero than at the extremes.
If we repeat the process a fewmore times and get more data points, we can see that the
distribution of turning angles is essentially triangular (Figure 2.10B). This definitely
isn’t a uniform distribution. Why not?
It turns out that the distribution of the sum of draws from a uniform distribution

is not itself a uniform distribution. This is because there are simply more ways to get
values near the center of the range than values at the extremes. Consider a simpler
case: rolling two standard six-sided dice. Even if you are not a professional gambler,
some familiarity with dice or board games has likely given you the impression that
rolling a seven is more common than rolling a two or a twelve (Figure 2.11). This is
more than an intuition, of course, it’s a mathematically necessary fact of probability.
Consider a case where you want to roll a two: snake eyes. Your first die must come up
one, and your second die must also come up one. This is the only way to roll a two.
Next, consider a case where youwant to roll a seven. If the first roll is a one, the second
must be a six. But the first roll could also be a two, in which case the second must be
a five. For any roll of the first die, there is a one in six chance that the second roll will
yield a total of seven. There are thirty-six possible outcomes when you roll a pair of
dice (6× 6= 36), so one in every six rolls will come up seven, while only one in every
thirty-six rolls will produce snake eyes.
When we repeatedly sum integers drawn at random from uniform distributions,

the distribution of those sums will be given by the binomial distribution. For a
large enough number of integers being summed, the binomial distribution is well-
approximated by the normal distribution. And indeed, the continuous version of
this scenario is the central limit theorem: the sum of a large number of uniformly
distributed quantities will yield a normal distribution. Technically, the variables
being summed need not be uniformly distributed, but merely identically distributed
and independent. That is, each number must be drawn from the same probability
distribution and be independent of all other draws.



2 3 4 5 6 7 8 9 10 11 12
Figure 2.11 Themany ways to roll two dice. Outcomes near the middle of the range of
possibilities are more probable.

The purpose of this divergence is to illustrate the importance of examining the con-
sequences of seemingly trivial modeling decisions.The distribution of turning angles
produced by summing two uniformly distributed turns is not itself uniformly dis-
tributed, but highly concentrated so that small turns are always more likely than large
turns even for highly “whimsical” agents. If turning angleswere uniformly distributed,
large turns would be muchmore common for those agents, whichmight dramatically
change the relationship between whimsy and the resulting number of collisions. In
general, it is wise to invest time considering the consequences of even the most minor
or seemingly trivial assumptions when modeling.

2.7 Flocking

In our basic Particle World model, the agents just move on their own and crash into one
another willy-nilly. Each agent is just moving along without any heed for what others are
doing. As a result, there are tons of collisions. Indeed, the only social behavior we have
modeled is collisions, and this behavior is confrontational to say the least. But now let’smake
things more interesting and imagine that our agents are a bit more civic-minded. They go
with the flow. In practice, that means that they go the same way that others go.
One of the big ideas behind agent-based modeling is that coherent population-level

phenomena can emerge from the aggregation of local, decentralized behaviors. In the last
chapter, we briefly discussed the boidsmodel, which illustrated how realistic flocking behav-
ior could emerge from three simple rules for mobile agents: separation, alignment, and
cohesion. Here we will explore the idea of emergence by adding just one of these rules to
our Particle World model: alignment.The particles will observe their nearby neighbors and
adjust their headings to match.
We’ll implement flocking by adding twonewglobal variables to the ParticleWorldmodel:

a Boolean variable called flock?, which will allow us to toggle between the original Par-
ticle World model and the version with flocking, and a parameter to control the size of the
local neighborhood that agents can observe, vision-radius. In general, when extend-
ing a model it is often desirable to set up the code so that you can recover previous or
alternative incarnations of the model. The code for this model in the repository is titled
particlesflock.nlogo.

46 Chapter 2



In our go procedure, we’ll have the agents call a new procedure called flock, which, if
flocking is turned on, will be executed before the agents whimsically turn andmove forward.
The go procedure now looks like this:

NetLogo
code 2.9to go

ask turtles [
if flock? [flock]
move
bounce-turtle

]
tick

end

Note that flock is only called when flock? is true, so that our code allows us to
directly compare conditions with and without flocking. When the flock procedure is
called, the agent scans an area described by a circle with radius vision-radius, cen-
tered on itself. The agent first checks whether there are any other agents in that circle. If
there aren’t, the agent does nothing. If there are, it records the directional headings for each
of the other turtles and averages them. It then adjusts its own heading tomatch that average.
The NetLogo code for this procedure is below. Note that we define a local variable called
mean-heading, which is the average of the headings of the other agents in the focal
agent’s vision radius.

NetLogo
code 2.10to flock

if any? other turtles in-radius vision-radius [
let mean-heading (mean [heading] of other turtles
in-radius vision-radius)

set heading mean-heading
]

end

What happens when flocking is turned on? Even when agents respond only to very close
spatial neighbors, cohesive flocks encompassingmost or even all of the agents in the simula-
tion emerge, with large groups of agents all traveling in the same direction (Figure 2.12, top).
If we compare the simulation before and after flocking is enabled, we also see that flocking
allows the agents to avoid all but a few rare collisions (Figure 2.12, bottom).
The flocking algorithm we have implemented is a highly simplified version of the boids

algorithm introduced by Craig Reynolds in 1987. This algorithm is also based on simple
particles moving at a constant speed, but the full version requires not one but three obser-
vational radii. Within the smallest circle, an agent turns to avoid collisions. If no collisions
are imminent, the agent looks within the second radius, and turns to align its heading with
its neighbors. It is this aspect—alignment—that we have added to the Particle World simu-
lation. Finally, if there are no nearby agents with which to align, the agent looks in a wider
radius and heads toward the center of mass of any agents observed, thereby maintaining
social cohesion. Having all three rules generates collective behaviors that are a bit more
realistic than what we observe in our version. This simple flocking model forms the basis
of more detailed explanations of collective behavior in a wide variety of species, including
schooling fish, flocking birds, and swarming humans (Sumpter, 2010). It is also the basis



0

1000

2000

3000

0 500 1000 1500 2000

time steps

co
lli

si
on

s

without flocking with flocking

Figure 2.12 Top: The emergence of coherent flocking when agents align with those nearby.
Bottom: Number of collisions over time. Simulation starts out without flocking, but flocking is
turned on (that is, flock? is set to true) at t= 1000. Flocking effectively eliminates collisions.
For this simulation, N= 300, vision-radius= 3, speed= 0.03, and whimsy= 10.

of almost all CGI (computer-generated) schools, flocks, and swarms in movies and video
games (Gerdelan, 2010). Play around with the simple model we have constructed and see
what behaviors you can produce by altering parameters and modifying rules.

2.8 Reflections

Throughout this chapter I have emphasized the importance of play. It is hard to overstate
its value for becoming a competent modeler. Play allows you to test the failure modes of
your code and provides opportunities for solving novel problems you might not otherwise

48 Chapter 2



encounter until the consequences are more serious. Spending time exploring in a domain
without severe consequences provides opportunities to build up competence and confidence
in navigating within that domain.15 We can learn somuch when we give ourselves license to
simply try things for the sake of trying them. Play is important even when coding artificial
worlds, partly because play helps you to develop stronger competence in turning your ideas
into reality. This facility can, in turn, help you to be less constrained by the details of any
particularmodel or software package, and instead allows you to be constrained only by what
you can imagine. Play also helps to cultivate your imagination. For any system of interest,
there are many ways to model it. Even once you have specified your parts, properties, and
relationships, there are still details to be decided upon, and these details sometimes matter.
Gaining some familiarity with how seemingly small decisions affect the behavior of a model
is a valuable muscle to train.

2.9 Going Deeper

In this book we will use NetLogo to code and analyze agent-based models. However, there
are also other languages and libraries you might take advantage of. Of these, the most com-
plete and best supported is probably the MASON library (Luke et al., 2005), which is a
Java library for agent-based modeling that has a rich collection of demo code and a broad
community of users. Several newer libraries are available in Python, notably Mesa (Kazil
et al., 2020) and the more recent AgentPy (Foramitti, 2021). The Agents.jl library, written
for Julia, is also promising (Datseris et al., 2022). At the time of this writing, these Python-
and Julia-based packages are still not as well developed or as widely used as MASON,
but due to the popularity of these languages among social scientists and data scientists,
they are growing their user bases along with all the trappings that come with that growth.
NetLogo, MASON, and Mesa can all be integrated with geographic information systems
(GIS), allowing agent-based models to be mapped onto real-world landscapes, including
cities, roads, and ecosystems. Of course, you don’t actually need a specific software library
to do agent-based modeling (though it often helps, particularly with visualization and
scheduling). A competent programmer should be able to write a working model in any
language they choose. For example, Acerbi et al. (2022) have recently provided an open
access textbook on coding simple agent-based models of cultural evolution using R. For
a deep conceptual discussion on modeling complex social systems, see Miller and Page
(2007).
There is a very rich literature on modeling the behaviors and patterns that emerge from

themovement behavior of embodied agents. To the extent that we will model mobile agents
in this book, their movements will generally be quite abstract and represent movement
through social space rather than physical space. But there are large and important litera-
tures on using models to understand the movement of collectives, including the behaviors
and patterns that emerge from various movement strategies. These include flocking and
schooling, the dynamics of crowds, and the decisions of social foragers. For a deeper look
into these topics, see Sumpter (2010) and Ball (2004).

15This is supported by a wide range of work in child development (Gopnik et al., 2015), animal
behavior (Smaldino et al., 2019b), and even robotics (Cully et al., 2015).



2.10 Exploration

1. I’m walkin’ here. Create a new NetLogo model in which a user-defined number of
agents are created in initially random locations and then walk around randomly.

(a) Create a new NetLogo model with a setup procedure that creates turtles.
(b) Create a slider for a parameter called num-turtles that controls the number of
turtles created.

(c) Write a go procedure that makes the turtles wander around the screen randomly.
To do this, have each turtle turn a random angle and then walk forward one spatial
unit.

2. Pen down.Observing the pathways of collisions in the Particle World model is not so
easy when all the agents look the same and you can’t see their trajectories over time.
This is easily fixed, however. NetLogo has primitives you can use called pen-down
and pen-up, which trace the movement trajectory of an agent using the same color
as the agent itself. To implement this tracking, change the setup procedure so that all
the agents are assigned a random color. Then add a Boolean switch to the Interface and
corresponding code in the Code tab that allows you to toggle whether or not the agents
leave colored trails as they move. Report your code and some screen captures of your
output. You’re a regular Jackson Pollack.

3. Collision analysis. Characterize how density (num-particles) and whimsy influ-
ence the number of collisions in 1000 ticks. Collect the data for at least three values of
each of the two variables, and report them in a plot and/or a table. Characterize the
results verbally. What did you learn? What are some of the limitations of your ability to
draw conclusions from this sort of analysis, and how might they be improved?

4. Exploding collisions. Create a new version of your Particle World model called Par-
ticle Smash. In this version, you will let the space be bounded rather toroidal, so that
agents will bounce off the walls. Moreover, crashing into other agents will now have
more dire consequences. To keep things relatively simple, restrict agent movement to
straight lines in the absence of collisions (whimsy= 0).
(a) Set the boundaries to fixed instead of toroidal. Change the dynamics so that the
turtles “bounce” off the walls if they contact the edge of the world. Recall from
physics that the angle of incidence equals the angle of reflection. For example,
when a moving turtle hits the wall on a shallow angle, it should bounce off at a
similarly shallow angle.

(b) Alter the code so that every time an agent collides with either a wall or another
agent, it changes color. Report your code.

(c) Update the code so that the first time an agent collides with another agent, each
agent splits into two smaller agents heading in random directions. It may be useful
to know that the NetLogo primitives hatch and die cause an agent to spawn
new agents and to be removed from the simulation, respectively, and that the
primitive size controls an agent’s size. When smaller agents collide, they should
remain the same size.

5. Bust a move. Study the properties of random walks. How far will one agent tend to
move from its initial location using a correlated random walk as a function of the max-
imum turning angle, θ (this is whatever parameter controls the turning angle)? Create

50 Chapter 2



a model in which a single turtle is initialized in the center of the grid. Each time step,
the agent should turn first to the left and then the right, where each turning angle is
a random draw from a uniform distribution between zero and θ . The agent will then
move forward some fixed distance. Ensure the grid is sufficiently large, relative to the
step length, that the agent cannot reach an edge in 1000 time steps.

(a) Code this model.
(b) Create trajectory plots for several values of θ ={0, 15, 30, 60, 180}.
(c) Create a plot or monitor that displays the agent’s Euclidean distance from the
origin. You may wish to use the NetLogo primitive distancexy.

(d) What do you conclude about the relationship between turning angle and distance
traveled for correlated random walks?

6. Color spread.This is a more challenging task to test your ability to translate a verbal
description into a working simulation. Make sure to document your code and describe
how each aspect works. You will create a new NetLogo model called Color Spread.
When the model is initialized, all patches will start as white or black (your choice)
except a single patch of some other color either at the center of the space or in one of
the corners. Your first task will be to allow the color to spread to adjacent patches.

(a) Build this model. At each time step, the color should spread from colored patches
to any adjacent noncolored patches (there are many possible ways to do this). Cre-
ate a button to launch the procedure. Describe verbally how the color spreads, and
include screenshots of the process.

(b) Add a plot that graphs the number of colored patches as a function of time.
(c) Create a chooser to allow the user to select which color will spread. NetLogo has
primitives for several colors, but it can also represent colors both as single numbers
from 0 to 139 and as RGB triplets.

7. Rainbow spiral.Here’s the tricky one. Create a NetLogo model that produces a rain-
bow spiral. When the model is initialized, all patches will start as white or black (your
choice) except a single patch of some other color either at the center of the space or in
one of the corners. When the model runs, it should produce a spiral (either inward,
starting in a corner, or outward, starting in the center) of spreading colors in which
patches change color one by one. Each colored patch should have its color chosen at
random. In this version, only one new patch should become colored at each time step,
and the model should stop running when the spiral is complete. For the ambitious:
you can choose to leave “layers” of black patches so that the spiral pattern is easier to
discern, as in Figure 2.13.

8. Flock of seagulls. Let’s do some experiments with our flocking model.

(a) Consider the parameter vision-radius, which controls how close agents need
to be to each other in order to influence each other’s heading. Fix the population
at N= 300, speed = 0.03, and whimsy = 10. Turn on flocking and initialize the
model with different values of vision-radius: {0, 1, 2, 3, 4, 5}. Plot the num-
ber of collisions over 5000 time steps for each of these values, and then plot the
rate of average collisions per time step against the value of vision-radius.
Is the effect that flocking has on collisions linear with the radius of vision? If not,
why not?

(b) Now consider how a propensity for random turning interacts with flocking. Con-
sider the following values for whimsy: {0, 15, 30, 45, 60, 75, 90}, and how each of



Figure 2.13 A run of the rainbow spiral model in a 101× 101 grid at t= 46.

these values interacts with the following values of vision-radius: {2, 4}. From
visual inspection, what sort of relation do you see between the parameters and the
emergent behavior of the agents? Next, run simulations out to 5000 time steps,
and plot rate of average collisions per time step against whimsy for each value of
vision-radius.

(c) Relate the quantitative patterns you saw in your plots to the dynamic visual pat-
terns you observed from simply watching the model run. How well do the graphs
accurately capture the relationship between your observed patterns and the param-
eters used? What sort of important information about agent behavior or emergent
patterns is not captured by these graphs? Can you think of other metrics that
might capture this information?

52 Chapter 2


