SUBSISTENCE ALGORITHMS:
WHY DO SOME SOCIETIES THRIVE
WHILE OTHERS FADE?

6.0 Introduction

One of the largest topics in archaeological modeling is human subsistence
and the myriad ways in which human groups adapt to different environ-
ments. Indeed, some of the defining features of H. sapiens are related
to the flexibility in subsistence strategies, such as the ability to develop
complex cultural and social solutions to acquire and manipulate what
we consume (e.g., using fire, domestication of animals, etc.), to plan for
the future, and to provision other members of one’s community. While
nonhuman animals do some of this, too—ants farm fungus, corvids store
nuts for the future, nonhuman primates provision their youngeven past
infancy—human societies do thisatunprecedented scale, doitregularly,
and have doneitthroughouthistory. Usingan agent-based modeling ap-
proach, we can examine the relationship between people and their envi-
ronments, which subsistence strategies were feasible in certain environ-
ments, how different food sharing strategies could develop over time,
how subsistence and exchange interrelate, and how these can lead to the
patterns we detect in the archaeological record.

Most subsistence models are built up from the patch level. While much
of the prior sections have focused on agent—agent interactions, subsistence
questions engage patch—agent interactions (and even patch—agent—agent
or patch—agent—patch interactions). This chapter is divided into the core

aspects of subsistence models:

* general dynamics of resource acquisition;

* resilience and adaptive strategies;

* dynamics in foraging behavior;

* population growth and fission—fusion dynamics;

* fitness and evolutionary dynamics; and

> Algorithm zoo:
subsistence and

resilience

> Consumption,
subsistence, and
resilience strategies

> Foraging algorithms

> Population dynamics,
evolutionary dynamics, and
fission—fusion algorithms
> Tragedy of the commons
> Game theory

> Parameterization and
model’s input data
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Although there isn't one
canonical textbook for ABM
in subsistence studies,
Wilensky and Rand (2015)
is a good place to start.

Recall that ABMs are
particularly useful for
computational problems
where the agents

and environments are
heterogeneous. This makes
it a great tool for exploring
evolutionary processes.
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* the Tragedy of the Commons model and fundamentals of game
theory.

In this chapter, as in previous ones, we show how to code simple funda-
mental algorithms in multiple ways, working toward more complex mod-
els of subsistence. Instead of coding one particular model from beginning
to end, we provide relevant sections of published simulations that include
subsistence. We begin by covering the Wolf-Sheep Predation model in the
NetLogo library. This model forms the basis for several other agent-based
models, such as 4mphoraBM,a model of viticulture in the Pre-Roman Gaul
(ch.9),and Ger Grouper,a model of Mongolian pastoralism, which we also
cover here. We introduce the MedLanD models to show how patch degra-
dation can be incorporated into subsistence models. We also cover fission—
fusion dynamics from Crema (2013) to show how population dynamics feed
oft models of subsistence. These fission—fusion dynamics are further ex-
ploredin several other models, such as the Cardial Neolithic model. Finally,
we discuss two important theoretical frameworks that are often considered
when modeling subsistence: evolutionary dynamics, such as fitness-based
evolution and social dynamics, including the tragedy of the commons and
the fundamentals of game theory. You can find the full model bibliography
and links to original code at the end of the chapter. Working versions of all
models are also available in the ABMA Code Repo.!

We follow these with a discussion on how to parameterize your model,
that is, where to find values and their ranges that can be used in your sim-
ulations. Parameterization is one of the most critical aspects of model de-
velopment, as it will impact how your model runs and how you validate it
against the archaeological record.

This chapter covers quite a lot of ground, but in the end you will have
several subsistence modelsin your repertoire, willunderstand how and where
to build up model complexity in light of data availability, and will begin to

examine the robustness of conclusions that emerge from a simulation.

"You can find all code written in this chapter in the ABMA Code Repo:
https://github.com/SantaFelnstitute/ABMA /tree/master/ch6
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6.1 Modeling Resource Acquisition

To model subsistence we must return to economic theory. A basic tenet of
economics is that most material resources are limited. In chapter 4, agents
targeted cells with a resource they needed, but we did not contend with
the depletion of those resources except to mark a cell as “used.” In this sec-
tion, we will begin to look at how the simple fact of scarcity can impact
human behavior. For this, patches will have variables representing the pres-
ence/absence or amount of a resource, as well as a way to regenerate, while
agentsusinga patch will need procedures to consume the resources on those
patches and from their own stores.

The fundamental algorithms that underlie most environmental pro-
ductivity models can be found in Wilensky’s 1997 model of Walf-Sheep
Predation. Wilensky's model is, itself, an agent-based implementation of
the Lotka-Volterra model, which is based on a differential equation. This
model illustrates a foundational principle of ecology; namely, that preda-
tors and prey oscillate in abundance over time as they engage in trophic in-
teractions. In Wilensky’s implementation, sheep subsist on available grass,
while wolves eat available sheep. The feedback between them causes fluctu-
ations of resources (sheep for wolves, grass for sheep) that drive sine wave-
like oscillation patterns in their populations.

This model can be accessed through the NetLogo Models Library.
If you open the code and look at the setup procedure, you will imme-
diately see regeneration times set for grass patches, and that not all patches
are productive. Green patches start with the maximum regrowth time, and
brown patcheshave their own grass regrowth clock, which isinitialized ran-
domly to avoid all brown patches turning green at the same time
(fig. A.4).

Next, each entity consumes resources. As the grass grows, sheep eat

grass and are, in turn, eaten by wolves. We will start with the grass:

Model:

Wolf-Sheep Predation by
Wilensky, based on the
Lotka—Volterra model

ABMA Code Repo:
ch6_wolf_sheep

Choose the sheep-

wolves-grass model
version from a drop-down
list in the INTERFACE.
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sheep
W wolves

Harass [ 4

Figure 6.0. Screenshot of the Wolf~Sheep Predation model. The population sizes
of wolves, sheep, and grass vary over time through linked consumption and re-
growth/reproduction cycles. These cycles are known as Lotka—\Volterra dynamics.

CODEBLOCK 60 to grow-grass
if pcolor = brown [
The built-in variables ifelse countdown <= 0 [
color and pcolor are set pcolor green

often used to track the

current state of the turtle set countdown grass-regrowth-time

or the patch. They also ]
hdHtOVSWﬂaethe [ set countdown countdown - 1 ]
dynamics of the model.
]
end
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When a patch becomes depleted (brown), it begins counting down ticks
from the number defined on the grass-regrowth-time slider. When it
reacheszero, the patch regrows and resets the countdown. In this model, the
grass resource is binary—green or brown—and once eaten it is unavailable
until the counter has reached zero and the grass turns green again.

In contrast, sheep eat the grass in a continuous manner.

CODE BLOCK 6.1
to eat-grass

if pcolor = green [
set pcolor brown
set energy energy + sheep-gain-from-food

]

end

The sheep update their energy with the value from the sheep-gain-
from-food slider. Here, the patch color is used to identify its state and
to trigger consumption. If we didn’t want to use color, another variable

could replace it, for example, a binary if grass? true . We could also

repurpose the counter since it is reset to equal grass-regrowth-time

. . . NetLogo colors can be

when it is productive (green): if countdown = grass-regrowth- L
referred to by name (e.q.,

time [...] (seecodeblock6.0). cyan, green, brown) or by

number. Check COLOR

SWATCHES in the TOOLS

menu.

An alternative implementation would be to have a continuous patch
variable for grass-amount , similar to the one we used in our replication
of the Artificial Anasazi model in chapter 3. We would initialize patches
with up to a max-grass maximum specified using a slider in the INTER-
FACE. Instead of waiting for the patch to fully recover, the grass could re-
grow by an incremental amount with each time step. You could also code
the sheep to consume a specified amount of grass that would be subtracted

from grass-amount .
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CODE BLOCK 6.2

Agents who die are no
longer available, so if you
want to record any of
their variable values, write
them to a list before
issuing the die command.
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patches-own [ grass-amount ]

to setup

ask patches [

set grass—-amount random max-grass

end

to grow-grass-cont
ifelse grass-amount < max-grass - grass—amount [
set grass—amount grass-amount + regrowth-amount
]
[set grass—amount max-grass]

end

to eat-grass-cont
if pcolor = green [
ask patch-here [ set grass-amount grass-amount -
sheep-gain-from-food ]
set energy energy + sheep-gain-from-food

]

end

The decision of whether to treat patch resources as binary or continu-
ous can beanimportantone. A binary variable is simpler in many ways, but
may notbe sufficientif the spatial or temporal heterogeneity of the resource
base is an important factor. Equally, if different agents consume different
amounts of resources, then the continuous version is more appropriate. An-
other consideration is whether data exists to inform these parameter values:
we can get estimates of kilocalories obtained by sheep and wolves, but when
modeling Neanderthalsand mammoths thesekind of numbers will be more

difficult to estimate.
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The sheep and wolves lose energy at each time step as they expend en-
ergy through metabolism and movement, and if that value is at or below

zero, they die.

to death
if energy < 0 [ die ]

end

A balance of consumption and regrowth needs to be met to create a
stable equilibrium among all three populations such that they do not go
extinct. To strike this balance is surprisingly difficult. For example, coun-
terintuitively, if the grass-regrowth-time isvery quick (e.g., 6 orless),
the wolves will go extinct. This is because the abundance of grass causes
sheep to become numerous, which in turn leads to soaring wolf popula-
tions. Wolves hunt the sheep to extinction, and their own demise follows
closely. With fast grass regrowth, the boom-and-bust cycle of sheep num-
bers is so dramatic that the wolves struggle to recover.

Infact,in mostagent-based models of human subsistence, the complete
extinction of the population is very commony; it is quite difficult to find a
stable equilibrium. Thus, a primary goal of these kind of models is estab-
lishing the range of parameter values that results in a stable ecosystem, with
humans and resources both thriving.

While humansand wolves are obviously quite different, the base model
from Wolf-Sheep Predation forms the backbone for several models on hu-
man subsistence and the resilience of early farming populations. The partic-

ularities of these agent—patch interactions make ABMs particularly suited to

working through the complex dynamics of human-environmental systems.

6.2 Population Resilience in the Face of

Environmental Perturbation

One of the biggest questions for understanding human populations is
abouthow they survive in years of low productivity. Resilience is the capac-
ity of a system, such as an ecosystem or a social system, to quickly recover
from hardship and external fluctuations. In models of subsistence, we see
populations of agents increase or decrease according to local productivity.
Sometimes populations are able to recover from productivity downturns,

such as a drought; in other cases, households die or migrate elsewhere.

CODE BLOCK 6.3

In some models, when
energy drops to
“dangerous” levels, it
triggers a set of new
behavioral rules aimed
at survival.

Use the sliders to
investigate under what
conditions the wolves
disappear. This can be
triggered by different
combinations of
parameters. Look back to

chapter 4 for equifinality.

resilience: the capacity of

a system to recover from
a perturbation.
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This is one of the biggest
assets of agent-based
modeling: while we may
know the endpoint of an
archaeological society, a
model can show us the
process that got the
society to that place.

spatial and temporal
variability: heterogeneous
distribution (in time or
space or both) of an
attribute, such as soil type
or average rainfall.

If the value of the
multiplier falls below

1, then the amount of
resource is reduced as
you multiply by a fraction
(e.g., 0.7); but when it
goes above 1, then a
bumper crop happens
(multiplication by,

say, 1.4).

CODE BLOCK 6.4
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Agent-based models are a great tool to study the resilience of a past
population, as they enable us to look at the feedback between the landscape
productivity and the individuals who live there. By examining how agents
respond to shifts in patch productivity, when they are able to survive, when
external factors or soil depletion make survival difficult, and how popula-
tions can bounce back from such perturbations, we can better understand
properties of resilient societies.

The perturbations that have an impact on the group subsistence are
usually related to spatial and temporal variability. Spatial variability usually
relates to the clustering of resources, or external factors such as substrates
determining soil quality, which differ across the modeled area. Temporal
variability may be related to climate oscillations, seasonal fluctuations, or
environmental degradation (e.g., soil depletion). The spatial variability can
beincorporated through a patch variable, either from imported data (e.g., a
GIs layer, see ch. 7) or coded manually (e.g., using clustering algorithms, see
ch. 3), while temporal variability may come from variables updating them-
selves every specificnumber of ticks orfromdata,suchasclimate curves.
Here, we will look at the different aspects of spatiotemporal variability.

There are many ways to model climate oscillations, the simplest of
which would be to modify the rate of regrowth of the resources. A simple
multiplier climate-state with values between 0 and 2 can be used in
amodified grow-grass-cont procedure. The value of the modifier can
be taken from, for example, a random normal distribution at the start of

go where the standard deviation denotes the variability of the climate or is
taken directly from data. For example, climatic curves such as temperature
or precipitation data could be imported from a Csvinto alonglist of values

that you could iterate through with each tick.

set climate-state random-normal 1 climate-variability

to grow-grass-climate

let regrowth-climate regrowth-amount * climate-state
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ifelse grass-amount < max-grass - regrowth-climate [
set grass-amount grass-amount + regrowth-climate

]

[set grass-amount max-grass]

end

Many of the more empirically derived ways to think about human sub-
sistence, such as the dynamics of shifting weather patterns or the impact
of substrates on growth rates of certain plants, were incorporated into the
farming dynamics of the Village Ecodynamics Project (Kohler, Bocinsky, et
al. 2012). This agent-based model simulated the farming system in the
arid area of southwestern Colorado. The area was dry farmed; Puebloan
farmers relied on rain to be able to grow their crops and rarely, if ever,
watered their fields. The researchers compiled retrodicted (or hindcast)
data on precipitation and heat patterns to model realistic farming pro-
duction. This kind of data is not always available, but if we wanted to
dosomethingsimilarinamodel’s patch data, we mightuse a probability
(e.g., ifelse random-float 1 < rain-probability )todetermine
whether an area would receive rain during a given time period.

In many environments, there is a marked difference between seasons.
For example, in societies engaging in transhumance, households move be-
tween summer and winter pastures, enabling them to provide a full food
supply throughout the year (see the movement patterns in the Ger Grouper

model discussed in ch. 4). To do this we use tick-based cycles:

to cycle-productivity

if remainder ticks 182 = 0 [set gain-from-food

summer-gain-from-food]

if remainder ticks 364 = 0 [set gain-from-food
winter-gain-from-food]

end

remainder dividesthe two numbers, in this case the number of ticks and
182 (signifying days), and returns the remainder. If the remainder is 0, then

ticks is a multiple of 182 and the code within the if command block is

CODE BLOCK 6.4 (cont)

Model:
Village Ecodynamics
by Kohler

Note that depending on
where this is implemented,
the rain could vary per
patch or rain everywhere
at once.

CODE BLOCK 6.5
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CODE BLOCK 6.6

Soil data is widely

available through various
databanks. See chapter 7
for methods on importing

different types of
geospatial data.

Model:

AgModel, version 0.3
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by Ullah

LEARNING TO RUN

run to switch to the summer value for per-patch food returns. The second
line switches it back at the end of the year. Cycling procedures in the go

code offer a flexible and dynamic way to adjust patch productivity over
time. Wren et al. (2020) use two tick-based cycles, one a14-day tidal cycle to
represent coastal shellfish productivity and a second cycle of four seasons
to represent caloric returns from edible plants.

Finally, modeling spatial differences in environmental conditions
(for example, different crop yields on different substrates or decreasing
yields duetosoil degradation) canbe doneinasimilar fashion to climate
modeling—using simple multipliers. We can manipulate the harvestal-
gorithm so that harvest-amount is multiplied by a variable denoting

the soil quality specific to each patch.

to harvest

set harvest-amount harvest-amount * soil-quality

end

The soil-quality can be dynamically readjusted to mirror the loss of
nutrients in consecutive farming seasons, Or we can use an imported map
with the soils of the region. In the Village Ecodynamics Project (Kohler
and Varien 2012), agents examine the underlying productivity of their home
patch and compareitagainst the productivity of each patch within a Moore
neighborhood. If their patch is not as productive as neighboring patches,
the agent moves. With productivity changing over time due to exploita-
tion, drought/moist years, and warm/cold years, among other drivers, this
causes agents to be reactive to environmental pressures, forcing them to
move across the landscape. We can model this combined temporal-spatial
variability by importing different seasonal productivity landscapes or by
having separate values for each season.

In a quite different model related to the transition from foraging to
agriculture, Barton and Ullah (2016) included not only regrowth of plant re-
sources but also evolution from a wild morphotype toward a domesticated
type of plant species. Patches that had been harvested by foragers would re-
grow slightly larger, easier to harvest, and at a higher density per patch due

to the effects of human selection. This example, and the majority of those
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above, are about adjusting the characteristics of patches due to either an ex-

P . . D - H
ternal pressure or human activity on a patch. However, in 4gModel thereis ~ Patches are thus given
“agency” in that they carry
out actions within the
“geneticmaterial” (i.e., pollen) outward to neighboring patches, thus creat-  system rather than just

an additional patch—patch interaction. Namely, their patches diffuse their
ing a system whereby a critical threshold of the domesticated morphotype being passive entities.
must be metbeforeitcan begin to overtake the wild type even in the absence
of continued human selection (Ullah 2015). Thus, they were able to look at
the feedback loop between the long-term impacts of human activity on the
environment and how that in turn increases the resilience of the society by

improving their farming yields.

6.3 Putting Energy to Use: Ways to Increase Resilience
The importance of storing surplus energy for the development of all kinds
of human societies is an important topic in resilience studies (Testart et
al. 1982) because that surplus energy allows people to act in new ways. Be-
yond the consumption and regrowth algorithms, models of agricultural
subsistence usually involve other sets of actions to put that surplus energy
to work, often in ways that invest some of that energy in the future: plant-
ing seeds, raising stock, or moving to better land. For example, storing grain
enables agents to trade when they have a surplus or to increase their re-
silience by maintaining a buffer in case of adverse events. Most sedentary
or semisedentary communities use storage to save some of their resources
for the off-season or for lean years. In those cases, one needs to establish the
limits to storage so thata modeled Bronze Age village does not end up with
silos and silos of grain. Stored food may havea decay-rate , representing
the rate of rot or pest damage.

Thus, another key aspect of modeling agricultural subsistence is con-
ceptualizing energy expenditure: be it for regular farming, opening new
fields, or for procreation. In each of these activities there is a trade-off be-
tween short-term investment and long-term gain and the associated risks
related to unpredictable environmental factors (e.g., crop failure).

Crabtree (2016) used a patch productivity model to examine how sub- ~ Model:
. . . . . AmphorABM by Crabtree
sistence agriculture and luxury agriculture interacted in southern France. In
the Amphor4aBM model, there are two types of farmers: Gaulish subsistence ~ ABMA Code Repo:

farmers (wheat) and Etruscan/Greek luxury farmers (wine). Only wine can ch6_amphorABM
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CODE BLOCK 6.7
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Wine Population
602 - [Eetruscan M Gauls
Woreek Cminers
Etruscans!
Bereeks

Figure 6.1. Screenshots of the AmphorABM model. Greek and Etruscan farmers com-
pete for land for their vineyards in the littoral zone (vine icons), while Gaulish wheat
farmers (person icons) occupy the interior and trade for their preferred wine. The two
graphs show the evolution of the different groups and their agricultural outputs.

be grown along the littoral, but wheat can be grown on any farming patch
(fig. 6.1). The following code shows the baseline algorithms for modeling

how fields are planted and harvested, and how grain is eaten and stored.

to plant
if pcolor != brown [
set pcolor cyan
set energy energy - planting-calories

if EtruscanWine > 1 [ set energy energy + 1 ]

end
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to harvest
if pcolor = cyan [
set energy energy + harvest-amount
set energy energy - harvest-calories
if metal >= 1 [ set energy energy + 1 ]

]

end

to eat-grain
set energy energy - 1

end

to store-grain
set storage storage + energy
set energy O

end

Ateachtick, Gaulishagents choose a fallow field and plantit with grain.
Ethnographically, people often hosted beer parties to help with
planting costs (e.g., McAllister 2006), so if the agents have wine available,
they get an energy boost to reduce the net energy loss from planting. Farm-
ers gain a certain amount of energy from harvested fields. For harvesting,
having metal tools helpsincrease efficiency; thus, if metal is available, agents
retain a certain amount of energy (Briggs 2003). Finally, they consume some
of their grain, and then store whatever is left (those procedures are in the
order listed above in AmphoraBM’s go code).

It is important to note that humans are quite particular in that their
fateis notalwayslinearly correlated to environmental shifts. We know from
history that there were periods during which even the optimal levels of pro-
ductivity could not maintain human populations. In those cases, we know
that other systems were at play to ensure that group’s survival, such as kin
and nonkin networks or large-scale trade. In chapter 8, we explore some of
the ways in which societal networks can make human groups resilient.

Equally important is the agent’s ability to assess the optimal strategy

when deciding where to use their energy, for example, during the selection

CODE BLOCK 6.7 (cont)

When testing code,
follow each key variable
by printing its value in
every function to make
sure the accounting is
correct (e.g., grain does
not go into negative
values, etc.). INTERFACE
plots may also help.

This model uses colors
to differentiate patches
and patch states. This is
handy when there are
multiple agent types and
makes it easier to account
for all of the changes in
foodstuffs/energy/time
variables.
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NetlLogo is often used as a
“simple” version of a model
to experiment on while the
simulation is developed in
a more computationally
powerful framework.
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Figure 6.2. A screenshot of the MedLanD model. Farms cultivate patches as needed,
while leaving previously used patches to regenerate in a swidden rotation system.
Farms undergo fission if a high energy threshold is reached.

of a new patch to plant. To understand this, we will switch to a different
agent-based model incorporating harvesting and soil fertility. In a study
of Mediterranean landscape dynamics and Neolithic farming (Med LanD),
Barton, Ullah, and Bergin (2010) developed a model of farming household
agents. In their model, agents assess how many plots of land they need based
on their household size and the previous year’s yields. They also assess the
soil quality and relative location of each patch to make choices about which
plots will likely have the greatest yield. The selection algorithm includes
the current soil fertility, which degrades with each year of cultivation but
replenishes each year that the land is left fallow. The MedLanD ABM also
models topsoil erosion and other spatial processes as a result of farming,
with greater rates of erosion if land is not left fallow (fig. 6.2). This is done
through a tight coupling to the geographic information system GRASS-GIS
of Robinson et al. (2018).

The main MedLanD model was builtin the Java-based DEvs-Suite (Sar-
joughian and Zeigler 1998). However, Barton (2014) developed a closely
related, though more abstract, NetLogo model. In Barton’s NetLogo ver-

sion, called Swidden Farming, pcolor isagain used to demarcate patch
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states with shades of green and brown for uncleared forest, active, or fal-
low fields, and purple and magenta forabandoned or dead farmsteads.” The
choose-land procedure usesacombination of patch and global variables

to rank and select new patches to cultivate:

to choose-land
let hh_num O
ask households [
set hh_num who
ifelse any? other (patches in-radius
swidden_radius) with [fertility > O and (owner =
hh_num or owner = -1)]
[
ask one-of ((((patches in-radius swidden_radius)
with [owner = hh_num or owner = -1])
with-max [ (fertility * harvest * init_energy /
100) - (farm_cost * init_energy / 100) -
veg_clear_cost - ((distancexy pxcor pycor) /
5) 1))
[
set xval pxcor
set yval pycor
]
farm xval yval

]
[set energy energy - (0.1 * init_energy)]

end

Here, the agent households assess whether there are any available
and fertile patches to move to in their search radius. The criteria assessed
when choosing the patch with the highest potential yield include

fertility ,thepatch’senergy capacity ( init_energy ), the proportion
of the patch that can be harvested ( harvest ) minus all the costs involved:

costs of farming (farm_cost ), preparing the land for farming

*For a link to the code, refer to the Model Zoo at the end of this chapter.

Model:
Swidden Farming by
Barton et al.

CODE BLOCK 6.8

Some of these variables
are parameters whose
values must be derived
from agricultural,
anthropological, and
historical data.
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Model:
Piaroa Swidden Farming
by Riris

Chapter 9 describes how
to properly document your
code for use by others.

optimal foraging theory: a
model of resource
acquisition behavior that
maximises the net benefit
(L.e., after costs have been
accounted for).

Model:
Patch-Choice by Barton

ABMA Code Repo:
ch6_patch_choice
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( veg_clear_cost ), and the costs of traveling to it ( distancexy ). The
household chooses the patch with the highest net energy yield.

Riris (2018) built on the concepts of Barton (2014) to develop his own
model of swidden agriculturein Venezuela. He investigated mobility ranges
and their effects on the pattern and extent of forest regeneration, effectively
demonstrating thata high-mobility pattern of swidden farming could result
inan Amazonian forest that was indistinguishable from “untouched” forest
to observers on the ground. This group of three subsistence models shows
that when the internal algorithms of an agent-based model are well con-
ceptualized and described, it is possible to switch not just between coding
languages (e.g., Java to NetLogo) but also back and forth between highly
empirical models like MedLanD and Piaroa Swidden and more abstract

models like Barton's Swidden Farming model.

6.4 Foraging Models

While so far we have been considering only farming models, many of the
same algorithms at least loosely apply to foraging societies as well. Foraging
agents can also select suitable habitat based on patch variables, move lo-
cation, harvest resources, and expend energy or time on these tasks. There
is also a rich literature on human foraging under the umbrellas of optimal
foraging theory (Stephens and Krebs 1986) and human behavioral ecology
(Winterhalder and Smith 1981). The many papers falling under these head-
ings tend to be quantitative and numerical model-driven, making them an
ideal source to draw upon for agent-based model design of human foragers
(for a review, see Hawkes, O’Connell, and Jones 2018). This section will
use a couple of abstract models by Barton to examine the two most com-
monly applied optimal foraging theory (OFT) models in archaeology: the
Patch-Choice (Barton 2013) and Prey-Choice (Barton 2015) models.

PATCH-CHOICE MODEL

Imagine you’re standing in front of a bush while picking berries. At the
start, the bush will be full and your calories-per-hour return will be high,
but as the bush becomes more and more picked over, there will be a point
when it is more profitable to leave that bush for the next bush. Mathemat-
ically, that point of departure should be when the rate of return on the

first bush drops below the average return of the environment (also known
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as the marginal value theorem; Charnov 1976). This, combined with the
cost that is the travel time to the next patch, forms the logic of the baseline
Patch-Choice model. To model this, we need the basics already covered in
agentharvest, updating patches to have depleted resources, patch regrowth,
and so forth. We also need a way to measure the average rate of caloric re-
turn for the agent over the last few time steps and the average return for the
environment.

We can create a slider for the resource-density of the landscape
such that when patches are created they have a certain probability of con-

taining food.

to setup_patches
ask patches [
set pcolor brown
if random 100 < resource-density [
set food food-value

set pcolor green

]

end

Agents need to track their general experience on the landscape so that
they know when their personal rate of return drops below the
threshold of the resource-density . To do so, agents will use a rolling
history of their food “encounters” over a certain number of previous time

steps ( encounter-1list ).

to forage
ask foragers [
rt random 360
forward 1
ifelse food > 0 [
let current-harvest random food
set encounter-list fput current-harvest

encounter-1list

marginal value theorem:

a model optimizing

an individual's foraging
rate by balancing the
diminishing rate in their
current patch against the
travel time to a new patch.
In an ABM, agents should
leave when the current
patch has a lower foraging
rate than the average of
their neighbors.

CODE BLOCK 6.9

CODE BLOCK 6.10

A list is the best data
structure for this. With
each time step, fput

adds each new cell’s return
to the list and but-last
drops the oldest value.
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CODE BLOCK 6.10 (cont.) ask patch-here [

set food food - current-harvest
set pcolor pcolor - current-harvest

if food <= 0 [set pcolor brown]

set encounter-list fput O encounter-list
]
set encounter-list but-last encounter-list
set encounter-rate mean encounter-list

]

end

to leave-patch

ask foragers

[
if encounter-rate < (resource-density / 100) [
rt random 360
forward 10
set encounter-list n-values 10 [food-value]
]
]
end

The go code calls forage first, where agents random-walk single

You can see how a stepsand harvest some amountof their encountered patch’s food amount.

mobility pattern similar to . - . .
Lévy Flights (ch. 4) is e agent updates its encounter-1ist with either the food amount or

Th t updates it ter-list with either the food t
coded here. OFT is used to  zero if the patch is empty, also dropping the last value off the list. Last,
determine how long each ¢ eagures its average return rate by taking the mean of the total returns.
patch should be used ) ) ]
before the agent moves on The leave-patch procedureisrun next, where agents seeif theiraverage

return has dropped below the resource-density of the landscape asa
whole; if it has, they make a longer movement to a new part of the map.
In general, the agent’s random-walk will slowly over-exploit one

area of the resource landscape by recrossing the same patches repeat-
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Figure 6.3. Screenshot of Patch-Choice model based on optimal foraging theory.
Agent paths show their short-step random walk around a localized area. When the
average return over the previous 10 time steps drops below the average for the envi-
ronment, they make a longer step to a new part of the landscape.

edly. When their average return drops too low, moving alarger distance
(forward 10 )toanunexploited partofthelandscape shouldimprove
their returns (fig. 6.3).

The code above simplifies the original Patch-Choice model that incor-
porated search and processing costs and agent energy levels, and divided the
landscape into a grid of nine eco-patches, each of which contained a hun-
dred or so of NetLogo’s patches (Barton 2013). Rather than move a longer
distance, agents would forage continuously within one eco-patch, and then
jump to another when return rates decreased. This highlightsan interesting
distinction between what OFT and NetLogo mean by “patches.” Resolving
that distinction is important for your model design and depends on your
model’s ontology and scales.

Wren et al. (2020) uses a similar patch-choice ABM, called the
PaleoscapeABM, to examine plant and shellfish foraging. In their model,
patches represent different habitat types, each of which has a different re-
turn rate. In addition to having agents measure a rolling average return
to decide when to move, foragers also look at all patches within a speci-
fied radius ( in-radius ) and make choices about where to move based on
the anticipated return and the cost of moving to that patch (see sec. 4.3 or

the MedLanD model’s patch selection algorithm above). Choosing among

Model:
PaleoscapeABM by Wren

Note how OFT's
simultaneous encounter
(ie., an of-the-moment
choice) differs from the
long-term dynamics we
can model using ABM.
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diet-breadth model: a
model concerned with an
individual’s acquisition of

specific resources within a
larger set of resources.
Agent actions are
determined by the value
and the cost associated
with acquiring those
resources.

Model:
Diet-Breadth by Barton
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several different options and weighing their expected net returns (energy
acquired after energy spent and/or time taken) is known as simultaneous
encounter (Stephens et al. 1986; Waddington and Holden 1979) and makes

a connection point to the next OFT model.

PREY-CHOICE MODEL

The Prey-Choice model is used to understand why only certain types of
foods end up in the diet, out of alonger list of available foods. The model is
often referred to as the Diet-Breadth model in archaeology since we are in-
terested in understanding the diversity of flora and fauna in a site’s archaeo-
logical record (Kelly 2013).

Imagine you are in a landscape with an unknown distribution of let-
tuce, apple trees, and moose. As you walk along, you find a field of lettuce—
should you stop for some? The lettuce is plentiful and easy to harvest, but
not very calorically dense. If you stop to forage, you are not going to run
into any apple trees or moose. If you do choose to move on, sure, a moose
will have a huge caloric return, but only if you encounter one, manage to
get close enough, hit it, track it, and process it. The math of this is rela-
tively straightforward if we assume the forager should always try to max-
imize their net caloric returns. The model is known as the Dier-Breadth
model because you can rank the species and determine the cutoff point at
which certain species will not be worth the effort. Species within the diet-
breadth should always be worth trying for when encountered. To model
this, we need several more per-species variables than last time, including
food values, processing costs, search times (based on density in the land-
scape), pursuit times, and the probability of a successful kill (especially for
the moose). It is only after all the costs and risks involved are subtracted
from the food value that we get a good sense of which species the forager
should try to acquire (Stephens and Krebs 1986).

We will use a simple model by Barton (2015) as our starting point. Set up
a hunter agent and a separate animal breed with four species types, each
with their own density/abundance, food-value, and processing-

cost . Their ranks, which determine whether the hunter should kill
the species if it encounters one, can then be calculated by subtracting the
processing-cost from food-value ,sortingthelist,and then extract-

ing that species’ position.
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to setup_animals

set rank-list (list (food-valuel - processing-costl)
(food-value2 - processing-cost2)
(food-value3 - processing-cost3)
(food-value4 - processing-cost4))

set rank-list sort-by > rank-list

create-animals numberl [
set species 1
set food-value food-valuel
set processing-costs processing-costl
set rank position (food-valuel - processing-costl)

rank-list + 1

Again, one of ABM's strengths is enabling agents to differ from one an-
other. Thus, Barton is able to depart slightly from the classic Diet-Breadth

model by incorporating an agent energy level that determines how will-

ing they are to take a lesser-ranked prey (fig. 6.4):

to forage
let prey one-of animals-here
if prey != nobody [
if (energy >= 85 and [rank] of prey = 1) or

(energy < 85 and energy >= 70 and [rank] of prey
< 3) or
(energy < 70 and energy >= 55 and [rank] of prey
< 4) or
(energy < 55) [

set energy energy + [food-value] of prey

end

CODE BLOCK 6.11

Again, lists are the most
computationally effective
way to process all this
information.

CODE BLOCK 6.12
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Model:
Ache Hunting
by Janssen & Hill

See chapter 4 for the Ache
Hunting model’s multilevel
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mobility algorithm.
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Figure 6.4. Screenshot of the Diet-Breadth model. The hunter agent pursues prey
species. The likelihood of the hunter attempting to kill any prey encountered varies
depending on how much energy the hunter has left.

The model also plots outarolling list of recently killed prey and hunter
energy levelsas the five species randomly walk around thelandscape. Greater
detail is included in another Prey-Choice model simulating foraging prac-
tices among the Ache hunters in Paraguay (Janssen and Hill 2014). They
follow a similar approach but also incorporate the additional prey param-
eters of pursuit time and probability of a successful kill, and different per-
species encounter rates for different habitat types (e.g., meadow, riparian,

high forest, etc.).

6.5 Household-Level Production & Population Dynamics

Thelastelementoften included in subsistence modelsis population dynam-
ics. While we discussed the death of agents when energy levels drop too
low, new agents can also be created. Subsistence models often include proce-
dures forhousehold-level fissioning (splitting), or individual reproduction,
when energy levels or local population sizes reach a certain threshold. De-
pending on the consumption and reproductive parameters, the result may

either be arelatively stable oscillation of the population, extinction, or run-
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away population growth. In chapter 4, we introduced the published model
Ger Grouper to examine migration scenarios at the population level (Clark
and Crabtree 2015). Ger Grouper examined how different levels of variabil-
ity in the environment impact the survival of households. In the model,
households fission when energy levels increase above a certain level. House-
holds extract and consume energy from productive patches and share them
according to certain probabilities with their relatives (Clark and Crabtree
2015); see fig. 6.5 in this book). Like in the Wolf-Sheep Predation model, the
tension lies in finding a balance between productivity of patches and repro-
duction within realistic parameter ranges. If agents reproduce rapidly, they
may outstrip their environment; if agent harvest is relatively low while en-
vironmental productivity is relatively high, the environment may have no
impact on agents at all.

Although itis possible to model the exact process of marrying and leav-
ing the house and then raising a child (e.g., Kohler, Bocinsky, et al. 2012), in
most models it is common to simplify it down to fission—fusion dynamics,
such that if a household-agent has enough energy stored it creates a new

household, dividing the energy between the parent and the offspring.

to reproduce-gers
if emergy >= 20 [
if random 100 < gerreproduce [
set energy (energy / 2)
hatch 1

]

end

Here, an offspringinherits the parent’s variables. When an agentis asked
to hatch, it passes its current values to the newly created agent, so we divide
the parent’s energy in two so both end up with half of the original energy.

As new households fission from parent households, you may want to
add movement commands to the hatch code (e.g., hatch 1 [ move-to

one-of neighbors 1] ) to ensure the offspring ends up on an appropri-
ate patch. However, note what comes next in the go code to ensure that
new offspring aren’t disadvantaged by, for example, having a higher chance

of landing on abad patch. As these agentsjoin the population, we can track

Model:
Ger Grouper by Crabtree

ABMA Code Repo:
ch6_GerGrouper

Recall that the Mongolian
word ger means yurt-style
house.

You can set a label to
show the current energy
level of agents by adding
set label round energy

to the go code.

CODE BLOCK 6.13

In some cases, we don't
want an agent to inherit
values from the parent
(e.g., imagine if there was
a variable “age”).
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Model:
Fission—Fusion by Crema

ABMA Code Repo:
ch6_FissionFusion

The symbol K is used for
carrying capacity in many
numerical models, such as
the Fisher—Skellam-KPP
wave of advance model
discussed in chapter 4.
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Figure 6.5. Screenshot of the Ger Grouper model. Ger agents are displayed on a
landscape with patches in different states denoted using “pcolor”. Agent labels show
their current energy level.

how populations grow (or shrink) depending on exogenous dynamics of
environmental fluctuations.

Ger Grouper explicitly simulates fissioning of households but leaves
the fusion part of the dynamic implicit. As seen before, agents could sim-
ply die if their energy got too low. Depending on the scenario, this could
literally represent a group starving to death, or we could just make the un-
coded assumption that if a household was no longer viable, the remain-
ing stragglers might go join another household. This process can instead be
modeled explicitly. Crema (2014) explored fission—fusion dynamics in an
abstract but highly scalable model. While other models focused on grasp-
ing the population dynamicsin particular human populations known from
the archaeological record (e.g., Kohler and Varien 2012; Crema 2013), this
model identifies simple rules driving human groups to expand or contract.

In Crema’s model, agents, who represent households, form groups and
respond to local environmental conditions (carrying capacity: K). The
number of agents on a patch determines agent fitness (¢), which in turn is
directly related to K. Fitness of agents drives reproduction (p), which leads
to fission and fusion events. For agents whose individual fitness is lower
than adesired threshold, itis advantageous to leave the group to seek a patch
with higher productivity. They can then choose to do one of the following

three behaviors:

* solo, where agents find an empty patch and forage on their own;

+ fusion, where they find another group and join them; or
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merge , where they find anearby agentand set out toan empty patch

together.

Through these simple rules, Crema was able to demonstrate that some as-
pects of population spread detected in the archaeological record can be
replicated through simple dynamics. While his model was built in R, here
we simplify and replicate a small portion of the code to show how the
fission—fusion dynamics work.

We use the parameter K to determine the maximum energy a turtle has
available from a patch. When the patch’s available energy is insufficient to
support the number of turtles (i.e., exceeds K), fitness benefits decrease dra-
matically. While this simplifies Crema’s asymptotically declining fitness, it

replicates the general fission and fusion dynamics (fig. 6.6).

extensions [ Rnd ]
turtles-own [ turtle_energy age ]

patches-own [ energy ]

to setup

ca

ask patches [
set pcolor white
set energy K

]

crt 50 [
set color 15 + (10 * random 12)
set age O

]

reset-ticks

end

CODE BLOCK 6.14
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Figure 6.6. Screenshot of the Fission—Fusion model. Agents expand outward from
their initial central point. Note the overlapping agents, which have undergone fusion
or merge procedures.

CODE BLOCK 6.14 (cont.) to go

ask turtles [
eat
fission
reproduce
grow-old

]

tick

end

Agents in the model consume resources locally (' eat ), sharing the en-
ergy available on the patch, K, among all local inhabitants. Finally, agents

age and die with a probability proportional to their age.
CODE BLOCK 615 t¢ eat

set turtle_energy energy / count turtles-here

end
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to grow-old
set age age + 1
if random 100 < age [die]

end

If there are too many agents on the patch to fulfill their needs, they
move away (fission). Agents have a chance to reproduce if they have enough

energy

to reproduce
if turtle_energy >= 1 [

if random 100 < reproduction [

hatch 1 [
set age O
rt random 360
]
]
]
end

Now that we have coded the environment, the agents, and their popu-
lation dynamics, we will add the three procedures for fission—fusion. Note
that in code block 6.14, we have added the Rnd extension since we will be
using a weighted random choice to decide among three types of fission.

We will reuse several other code pieces from chapter 4 (e.g., the targeted

walk algorithm), so it should feel familiar.

to fission
if turtle_energy < 1 [
let items [ "fusion" "solo" "merge" ]
let weights [ 0.5 0.3 0.2 ]
let pairs (map list items weights)
let selection first rnd:weighted-one-of-list

pairs [ [p] -> last p ]

CODE BLOCK 6.15 (cont.)

The probability of dying is
proportional to the age so
no agent can exceed 100
years of life.

CODE BLOCK 6.16

We also discuss the
weighted choice, a.k.a.
roulette wheel algorithm,
on page 223.

Add sliders for K and
reproduction to the
NetLogo interface (range 0
to 30).

CODE BLOCK 6.17

Add a print pairs
command after

let pairs if you're not
sure how this code works.
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CODE BLOCK 6.17 (cont.)

Note that the probabilities
add up to 1. This is not
actually necessary, but it
helps to make sure the
model’s logic is sound. In
the model repository we
implemented these
weights as sliders.

This model demonstrates
how individual
circumstances and choices
shape large-scale
population patterns.
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if selection = "fusion" [fusion]

if selection = "solo" [solo]

if selection = "merge" [mergel

]

end

to fusion
let target min-one-of patches with [any?
turtles-here] in-radius 19 [distance myself]
if target != nobody [move-to target]

end

to solo
let target min-one-of patches with [not any?
turtles-here] in-radius 19 [distance myself]
if target != nobody [move-to target]

end

to merge
let friend min-one-of other turtles
in-radius 2 [distance myself]
let target min-one of patches with [not any?
turtles-here] in-radius 10 [distance myself]
if target != nobody and friend != nobody [
move-to target
ask friend [move-to [patch-here] of myself]
]

end

During the fission events, agents choose from three different outcomes
with a probability given by the values [ 0.5 0.3 0.2 ] .

Through these three algorithms, coupled with reproduction and death
parameters, we can watch the agents expand and contract across the land-

scape through time. This model can also be used to simulate the changes in
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the distribution of populations across a landscape in reaction to changes in

patch productivity since it is impacted by K.

POPULATION STABILITY & GROWTH

In the reproduce and grow-old procedures in our replication of
Crema’s model, the parameterization of the population dynamics is quite
abstract. Really, we are just comparing the ratio between the two values:
probabilities of reproduction and death per time step. If the two are
equal, the population will go extinct since available energy would limit re-
productive rates. But as reproduction increases relative to death, the
population may survive and expand. In other models, the reproduction and
death rates are empirically derived, with values data-mined from ethno-
graphic, historical, and other census records of societies. To give an example
of how it works in practice, Wren and Burke (2019) looked through records
of total fertility rates—the average number of births during women’s
lifetimes—in different societies to find a value to use for their reproductive
rate. Pennington (2001) reported values between 2.8 and 8.0 births with a
median of 4.3, and included a specific example that was ecologically similar
to their case study with a value of 4.4. With an estimate of average repro-
ductive years, a litctle math in setup , and taking into account that their
chosen time step represented one month, that worked out to a probability

of 1.467% chance of an agent reproducing each month:

to reproduce
ask turtles [
if random-float 1 < birthrate_month [ reproduce ]
]

end

to check_death
ask turtles with [age > 0] [
set deathrate_month birthrate_month
if random-float 1 < deathrate _month [die]

end

Model:
LGM Ecodynamics
by Wren and Burke

ABMA Code Repo:

ch6_weightedsurvival

CODE BLOCK 6.18
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Wren & Burke based
their model on Barton et
al's Hominin Ecodynamics
model.

CODE BLOCK 6.19

This is a good example of
a linear model, here:

y = death_slope X x +
death_yintercept. The
values for these variables
were solved in setup.
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Initially, they also set the death rate to the same value such that the
overall population growth rate would average out to be 0%. Note the ad-
ditional condition that only agents with age > 0 are at risk of death. In
this model’s go code, reproduction occurs before death, so there are actu-
ally more agents (i.e., the agents at the start of that time step plus the newly
hatched ones), being subjected to the same probability of death. Without
the caveat that newly hatched agents should be excluded, this would result
in a net population decline.

From this point, a few different possibilities exist depending on the
scope of the model. If you have an 4 priori reason to model a fixed popula-
tion growth rate, you could just adjust the ratio between the reproductive
rate and the death rate such that you have a top-down imposed population
growth rate. Using a more bottom-up approach, Wren and Burke (2019)
were interested in how the spatially variable ecological conditions might
have affected the survival of groups in different parts of their landscape. To
experiment with this, they adjusted the probability of death such that the
patch suitability values, which ranged from 0 to 1, would affect how
likely an agent was to die (fig. 6.7). They assumed an inverse linear relation-

ship between probability of deathand suitability andcodedinalinear

equation to determine the per-patch probability of death:

to habitatsuitability_check_death
ask turtles with [age > 0] [
if random-float 1 < (death_slope * suitability) +
death_yintercept [die]
]

end

For example, if this equation was applied to agents on the SugarScape
hills in ch. 3, the agents at the bottom of the resource hills would be more
likely to die, leaving the ones at the top of the hills more likely to have net
population growth (fig. 6.7). The fixed probability per patch can also be
replaced with a dynamic patch variable and equations to determine rates

of reproduction and death, as in Crema (2013).
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Figure 6.7. Screenshot of the LGM Ecodynamics model. Agents on lighter shaded
cells (i.e., higher “suitability”) have a higher probability of surviving, thereby driving
increased net population growth in those regions. The structure of the landscape
segments the population over space and drives population dynamics.

AGENT FITNESS & EVOLUTIONARY DYNAMICS
Differential rates of reproduction, based on a measured agent attribute,
can lead to interesting dynamics of cultural and/or biological evolution.
Agentattributes may be thought of as measure of their fitnes , where those
with higher fitness have a higher likelihood of reproduction or survivabil-
ity. How fitness is determined varies widely depending on research ques-
tions, butitcan either directly orindirectly affect other agent characteristics
(fig. 6.8).

A simple algorithm makes fitness equal to reproductive probability

inasimilar butinverse manner to the check_death procedurein code
block 6.18:

if random-float 1 < fitness [ reproduce ]

Another method is to use a weighted choice or roulette wheel approach
through the Rnd extension. This will ask some proportion of the agents to
reproduce, but we will make it more likely for agents to be asked to repro-
duce if their fitness is higher: ask rnd:weighted-n-of 10 turtles

[fitness] [reproduce] .

fitness: a measure of

an agent’s “quality,”
usually relative to

other agents, such as
likelihood of reproduction
or survivability in a
biological system, or
presence of preferred traits
or behaviors that bring an
economic or social benefit
in a cultural system

(see ch. 5).

CODE BLOCK 6.20

roulette wheel: an
algorithm that selects
among multiple outcomes,
each with a different
probability. As in casino
roulette, where getting a
red pocket is more likely
than a specific number.
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CODE BLOCK 6.21

Model:
Roulette Reproduction
by Wren

ABMA Code Repo:
ch6_roulette_rep

We also used a roulette
wheel in the weighted-
random-walk in chapter

4 where agents were
more likely to move to a
patch with a higher
attribute value.
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Figure 6.8. Screenshot of the Roulette Reproduction model. The roulette wheel pro-
vides a weighted probability of reproduction based on a fitness measure. The average
fitness of the population increases (y-axis) as a single lineage replaces the initially

random population over time (z-axis).

As a simple example of cultural evolution, we will build a quick model

around the roulette wheel approach to fitness-based reproduction:

extensions [ Rnd ]

turtles-own [ fitness age ]

to setup
ca

crt 100 [

set fitness random-float 1

set age 1

setxy random-xcor random-ycor]

reset-ticks

end

to go

ask rnd:weighted-n-of 10 turtles

[fitness] [reproduce]

ask n-of 10 turtles with [age > 0] [die]

ask turtles [

set age age + 1

set heading heading + 15

fd 1
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CODE BLOCK 6.21 (cont.)
ask turtles [

set age age + 1
set heading heading + 15
fd 1

]

tick

end

to reproduce
hatch 1 [ set age 0 ]

end

Here, we assign fitness as a random number in the setup rather than Note how fitness

L . - . determines the probability
as a characteristic of the environment. The weighted-n-of line asks ten - . .

of reproduction while

agents to reproduce, but is more likely to ask agents with a higher fitness  death is equally likely for
value. We then kill off an equal number of turtles, though sparing those ~ €Ve'yone: Over time this
) leads to changes in the
who just hatched. average fitness in the

Let’s examine the effects this has on turtle demographics. In the INTER-  population.
FACE, add three plots to measure: count turtles, mean [fitness]
of turtles,and mean [age] of turtles.Runthemodelforabout  Line plots of avaerages are

easiest here, but fitness

soo ticks and examine the plots and agent population. You should notice
and age could also be

first that the population size remains constant; our plot is just a check to  bar-plot-based histograms
if you needed to see the

make sure the model is doing what we expect it to do. The fitness plot will
variability at each time

show that the fitness of the population steadily increases (fig. 6.8. The step rather than the trends
lower-fitness individuals are chosen to reproduce less often by the roulette  over time.
wheel, yet they die just as often, so their lower fitness value does not get
passed on to the next generation with as high a frequency as the more fit
turtles. The third plot shows that the average age of agents quickly rises
and then stabilizes at age 10. While some agents will be lucky and live to 50
ticks or so, since the death rate is constant and random, it is highly unlikely
that an agent will live to be 100.
To summarize, with this simple model we have mechanisms that pro-
duce a stable population size, a reasonable age structure in our population,

and agent attributes that increase when under active positive selection. If
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The probability of dying is
related to the number of
times an agent underwent
the check-for-death
procedure. Although at
each time step the
probability of dying is the
same, those agents that
lived 11 years had 10 more
chances of dying compared
to a 1-year-old agent.

We used a similar
approach in chapter 1 to
show color inheritance in
the Y&B Diffusion Model.

Model:
Cultural Hitchhiking by
Ackland et al.

CODE BLOCK 6.22
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the fitness attributes were genetically inherited, then this would be a sim-
ulation of biological evolution under natural selection; however, if that at-
tribute represented a cultural trait, we could equally be modeling cultural
evolution. In that case, we could add in some transmission of cultural traits
(see sec. 5.2 in the previous chapter).

Whether genetic or cultural, the fitness value was the attribute un-
der direct selection. However, what do you notice about the agents’ colors
over the course of a run? Since we did not assign a color when we created
the turtlesin setup , they were randomly assigned. We also did not assign

anew random color within the reproduce procedure, so this means that

the hatched agent inherits their parent’s color.

Color has no direct connection to fitness in this model, but the colors
assigned to agents with higher fitness values are more likely to reproduce,
leading rapidly to only one or two colors being represented in the agent
population. We can think of color as representing any other attribute of
a population that “hitchhikes” along by accident. For example, Ackland
et al. (2007) published a study looking at cultural traits like language or
neutral genetic markers, and how they may be carried along a diffusion
wave with an advantageous cultural trait like farming.

Add a small additional line to your code to introduce small mutations
(random increases or decreases) in the value of these attributes. From this
simple addition, evolutionary dynamics can emerge from the underlying

combination of population dynamics, random inheritance, and selection:

to reproduce
hatch 1 [
set age O
let mutation direction ome-of [-1 1]
set color color + (1 * mutation_direction)

]

end

In the hatch code, we first randomly choose whether the mutation
will increase or decrease the value, then adjust the color inherited from the
parent agent by a small amount (brighter or darker color).

Fission models also usually include mobility algorithms since “child”

agents move to a new cell to avoid over-exploiting the parent’s patch. A
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Figure 6.9. A screenshot of the Cardial Spread model. Detailed parameters, including
birth and death rates, fissioning thresholds, mobility behaviors, and ecological condi-
tions (lighter shades), control the spread of the Cardial Neolithic (darker shades).

good example of a model that integrates subsistence and mobility is the
leap-frog model of Cardial Neolithic dispersal discussed in section 4.5 of
chapter 4. Bernabeu Aubdn etal. (2015) model villages of farmer agents each
with their own local village-population size variable. The model uses
a while loop such that each of the people, which individually are not
agents butjust numbersin the village-population variable, is subject
to a probability of birth and death. If the village population reaches a spec-
ified population size, it marks itself as ready to fission, and the child village

moves on according to one of several movement algorithms (fig. 6.9):

to farmer-subsistence
let people village-population
let life-cycled O
while [life-cycled < people] [
if random-float 100 + 1 < farmer-birth-rate [ set
village-population village-population + 1 ]
if random-float 100 + 1 < farmer-death-rate [ set
village-population village-population - 1 ]
set life-cycled life-cycled + 1

Model:
Cardial Spread by Bergin

CODE BLOCK 6.23
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CODE BLOCK 6.23 (cont)

Model:
Multilevel Population
Dynamics by Gauthier

This R model can be
replicated in NetLogo
using the LevelSpace

extension.

Using symmetrical
(triangular or hexagonal)
lattice removes many of
the distance issues
discussed in sec. 4.3.

The tragedy of the
commons is a phenomenon
that extends well beyond
collective agreements in
small-scale agrarian
populations.
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if village-population > max-farmer-per-patch and
village-population > farmer-fission-hh-size [

set time-to-fission? true

end

As discussed in chapter 4, an early stage of model developmentinvolves
selecting whether an agent is an individual, a household, or a village; that
is, the scale of the model’s dynamics. Some subsistence models incorporate
multilevel interactions within a single model. Gauthier (2019a) uses three
nested models: one for individuals, one for households, and one for set-
tlements. Each has its own dynamics, and the outputs of each level inter-
act with the others. For example, individuals have age-specific fertility rates,
which vary depending on the amount of food available within that individ-
ual’shousehold. The population of a household affects the food production
rate of that household, and if a household’s population increases above a
certain threshold, one individual may leave to form their own household
(i.e., fission). At the settlementlevel, the model isa cellular automata where
neighboring cells (in this case a hexagonal lattice) may be occupied as set-
tlement populations grow beyond their local carrying capacity (Gauthier

2019b).

6.6 Tragedy of the Commons

So far we have focused on the interactions between the environment and
agents. However, the interactions among agents in such a system can be
equally rich. Let’s start with introducing one of the most famous models
of group interaction over limited resources: the tragedy of the commons
(Hardin 1968).

For centuries, an area of publicland known as the commons was an em-
blematic feature of the British countryside. This was land that belonged to
everyone. The tragedy of the commons refers to a model of how the use of
such common resources can be negotiated. It is a well-known paradox that

by optimizing self-interest, individuals can drive the system to a collapse
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where it serves no one at all. If each farmer grazes as many cattle in the com-
mons as they can (maximizing their own short-term returns), the result will
be a barren patch of land where no grass can regenerate. This paradox oc-
curs because the gain from using the commons goes to an individual farmer,
while the cost of the damage from overgrazing is shared among all farmers.
How to prevent the inevitable outcome of collapse depends on the group’s
ability to negotiate social contracts, thus bringing us to the vast topic of
modeling human cooperation and the theoretical, mathematical framework
behind it, known as game theory.

Schindler (2012) implemented the classical version of the tragedy of the
commons (fig. 6.10. Here we will simplify iteven further. Open a new model

and code the setup:

* Setup a world with two breeds: cows and herders living in the world
of green patches.

* Use sliders to set the initial number of each breed (default: 10 cows
and 5 herders).

* Create cow variables: owner and forage and assign one of the
herders to each cow’s owner variable.

*+ Create herder variables: now_cows and past_cows and set

now_cows to each herder’s cow count .

In the go procedure, the cows graze, the herders can add cows after
they evaluate their stock, and grass regrows. We also include a stop condi-
tion so that the model’s run ends when tragedy strikes the commons (i.e.,
the grass is so depleted that the cows die).

Beforelookingat the following code blocks, think abouthow you could
implement the graze procedure using the variables you have created and
what we have covered so far in this chapter. How will you track the cows’
forage and mark patches as eaten? How will you stop cows from trying to

graze in depleted patches? How will the patches recover?

Model:

Multi-Agent System of the
Tragedy Of the Commons
(MASTOC) by Schindler

ABMA Code Repo:
ch6_tragedy_comm

Use with [ owner =

myself ] to count
herders’ cows.

It is good practice to work
out the structure of key
algorithms, like graze, in
pseudocode. At this point,
you should be able to
come up with a working
solution even if it isn't the
same algorithm as our
version in code block 6.25.
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Figure 6.10. Screenshot of the MASTOC model. A group of herders and their too-
rapidly-increasing cow population. Note that one herder's cows ran out of available
grass and died.

CODE BLOCK 624 ¢¢ go

graze
evaluate-stock
grass-regrowth

if not any? cows [stop]
tick

end

Here, each time step represents one day and uses a while loop to have
cows repeatedly move to grass patches and forage until they meet their day’s
food requirement (setbyaslider cow-forage-requirement with values
between 0 and 100) or until the grass runs out. If they cannot meet their

energy needs, they die.
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to graze

ask cows [ set forage 0 ]

while [max [ forage ] of cows < cow-forage-requirement

and any? patches with [ pcolor = green 1] [

ask cows with [forage < cow-forage-requirement] [
if any? patches with [ pcolor = green ] [

move-to min-one-of patches with [ pcolor =
green ] [ distance myself ]
set pcolor black

set forage forage + 1

ask cows [
if forage < cow-forage-requirement [ die ]
]

end

Note that unlike in some of the previous models, when energy was a
continuous variable, patches here only have a single unit of grass and are
immediately marked as depleted (through set pcolor black ) when a
cow grazes on them.

Next, we have herders evaluate their stock and add more animals to the
pasture if they did not lose too many cows during the previous day. To es-
tablish this, they compare the number of cows they have now, now_cows ,
with that in the previous time step, past_cows . If some of their cows
died in the previous step, that means that there was not enough grass for
everyone. The unselfish thing to do would be not to add any more animals.
Herders have a variable selfishness (set with a slider), which deter-
mines how many cows need to die before they become concerned enough

not to add any more to the common pasture.

CODE BLOCK 6.25

Don’t expect to be able to
write the whole model out
in one go. Build up the
complexity of your
procedures bit by bit.
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CODE BLOCK 6.26

Add to the INTERFACE a
selfishness slider with
values 0-10 and a grass-

regrowth-rate with
values 0-1, increment 0.01.

CODE BLOCK 6.27

Add a few plots showing
the number of grass
patches, cows, and active
herders to trace the
evolution of the system.
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to evaluate-stock
ask herders [
set past_cows now_cows
set now_cows count cows with [owner = myself]
if now_cows = 0 [set color red]
if now_cows >= past_cows - selfishness [
let mycows cows with [owner = myself]
if any? mycows [

ask one-of mycows [hatch 1]

]

end

Finally, the grassregrowsatarate setby aslider. Since the grassisasingle
energy unit (marked as green or black), we regrow patches using a proba-
bility of regrowth rather than increasing by even increments. Accounting
is easier here, since only black patches are asked to regrow and they cannot

grow pasta max-grass limit.

to grass-regrowth
ask patches with [pcolor = black] [
if random-float 1 < grass-regrowth-rate [

set pcolor green

]

end

Inthe evaluate-stock procedurewehaveasked herders whose cows
have died to turn red. If you now run the model under different combi-
nations of cow-forage-requirement , grass-regrowth-rate, and

selfishness, you can see how many herders can take advantage of the
common land. See if you can find a parameter combination that results in
alasting stable system instead of the herders driving the cow population to

extinction.
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GAME THEORY

The tragedy of the commons emerges from agents’ interactions in which
each agent tries to maximize their own utility in effect competing over a
limited subsistence resource. In this case, the game is simple: the more cows,
the higher the individual payoff up to a point when grass gets completely
depleted and no one can take advantage of it anymore. You can easily imag-
ine how this kind of situation will lead to a social contract in which indi-
vidual payoft is constrained to a solution sustainable for the whole com-
munity over long term. This in turn creates a situation in which agents
can follow two strategies: cooperate or defect. This kind of framework of
interaction falls under the scope of game theory. Game theory is a family ~ 9ame theory: a

mathematical framework

of mathematical models of interactions between agents trying to optimize .
studying models of

their individual utility while outwitting their opponents (Bonanno 2018). interaction between

The most basic of all game-theoretical games is the Prisoner’s competing agents, usually

Dilemma (Axelrod 1980; Poundstone 1993). Imagine two gang members rattonal decision makers
caught by the police. They are separated and can either betray their col-
league (defect) orstay silent to protect them (cooperate). If they both defect,
their prison sentences will be ten years each; if they both stay silent, they
will be sentenced to two years. Yet if only one of them defects, the betrayed
partner gets a five-year sentence while their deceitful colleague goes free.
The problem is set in this way to show that although the optimal solution
of the systemis for both to stay silent (a total of four years of incarceration),

individually, betraying the colleague holds the highest potential reward.

‘ Cooperate ‘ Defect

Cooperate | 2 yrs/2yrs s yrs/free
Defect free/s yrs | 10 yrs/10 yrs

Now, this is a single instance of the situation, but in the real world
we make such decisions repeatedly, which means that the system evolves
over time and reputation becomesimportant. Also, consider how this game
would play out in a space where agents are neighbors spread over an area

and free to choose a strategy: defect or cooperate. It pays to cooperate if one

is among other cooperators. However, a single defector can easily take ad- Model:
. . . . Prisoner's Dilemma by
vantage of their sincere neighbors, causing them to switch and start defect- :
Wilensky

ing. Thisdynamicis captured in the Prisoner’s Dilemma Basic Evolutionary

model, which you can findin the NetLogo Models Library (Wilensky 2002).
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We initiate all patches with either “cooperate” or “defect.”

CODE BLOCK 6.28
patches-own [ cooperate? score ]

to setup
clear-all
ask patches [
ifelse random-float 1.0 < (66.6 / 100)

[set cooperate? true
set pcolor yellow]
[set cooperate? false
set pcolor red]

]

reset-ticks

end

The agents (i.e., patches) then interact and calculate the payoft of this inter-

action score , which they will use to determine how to behave in the next
round.

CODE BLOCK 6.29
to go

ask patches [interact]
ask patches [select-strategy]
tick

end

To calculate the payoft, agents simply count the number of cooperating
The slider neighbors if they are one of the cooperators, or multiply that number by a

defection-award takes . . . .
° defection-award (setbyaslider)if theyareadefector. Ateach timestep,
values between 0 and 3,

with a 0.25 increment. agents assess who was the most successful agent (i.e., the neighbor with the

highest score) in their neighborhood and copy that agent’s strategy.
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to interact
let total-cooperaters count neighbors with
[cooperate?]
ifelse cooperate?
[set score total-cooperaters]
[set score defection-award * total-cooperaters]

end

to select-strategy
set cooperate? [cooperate?] of max-one-of neighbors
[score]
ifelse cooperate? [set pcolor yellow] [set pcolor red]

end

If you set the value of defection-award to close to 1.5, you’ll find
an interesting equilibrium of constantly shifting areas dominated by either
defectors or cooperators.

Thisisjustasimpleapplication of the most basic model in game theory,
acontinually growing field of mathematics. There has been very limited ap-
plication of it in archaeology, with only a handful of models taking advan-
tage of this powerful framework (Kohler, Cockburn, et al. 2012; Crabtree

etal. 2017).

6.7 Parameterization, Realism, Abstraction & Heterogeneity

As you were building the subsistence models, you might have noticed that
in many places the code required specific numbers—parameters—rate of
growth, size of the yield, number of days between harvests, etc. These are
differentfrom variables, i.e., individual attributes of the agents that dynam-
ically change over the course of a run, such as age, or energy level. Parameter
values must be carefully selected in the process known as parameterization.
The task of parameterization involves selecting values and ranges for all the
parametersinamodel before running experiments. In practice, thisinvolves
some combination of selecting ranges derived from the archaeological or
ethnographic records, making up values that seem logical, or picking arbi-

trary ranges like 0 to 100. While often challenging, being forced to select

CODE BLOCK 6.30

variable: attribute of an
agent, patch, or the world
that can change over the
course of a simulation run,
such as age, fitness, grass,
or number of agents alive.

parameterization: the
process of selecting
appropriate parameter
values and value ranges
for a model before running
experiments.
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emulation-driven models:

data-driven models

encompassing a high

degree of realism and

precision. Commonly

validated against

archaeological datasets.

exploration-driven
models: usually

theory-driven models,

showing a high degree of

abstraction and generality.
Commonly validated
against stylized facts or
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values is a key advantage of the ABM approach, because it forces formalism.
Terms like “rapid,” “efficient,” or “close” need to be replaced with valuesin-
dicating, for example, how rapid the change of subsistence strategy occurs,
how efficienta new subsistence strategy is, or whether “close surroundings”
means a 5 or 50 km radius. Models often surprise us in terms of how re-
sponsive they are to certain parameters, regardless of our intuition regard-
ing their importance or role in the model’s dynamics (Romanowska 2015b).
As an example, in the Wolf-Sheep Predation model the grass growth rate
has an impact on the population of wolves (if it is too high, they go extinct
first; if it is too low, they . . . also go extinct first), even though wolves do
not eat grass themselves.

The models discussed in this chapter vary widely in their level of ab-
straction versus empiricism. Of course, all models are simplified representa-
tions of the real world, since by definition a model is an abstraction. How-
ever, some models attempt to be closer to our empirical understanding of
a given phenomenon, while others are more abstract and focus instead on
the dynamics of a modeled system. Premo (2010) referred to the different
goals of models: emulation, where the modeler’s goal was to test specific
hypotheses by using empirically derived parameter values, and exploration,
where the modeler was focused on theory building through understanding
the dynamics of a simpler and more abstract model.

In emulation models, parameter values are meticulously derived
from data and their ranges closely coupled with each other in respect to
the scale (e.g., energy consumption is matched to the harvest period). For
example, in a population dynamics model we could determine age-specific
fertility rates using literature on demography and have the probability of
death correspond to the Siler hazard equation (Gurven and Kaplan 2007).
Importantly, though, once one of the parameters is pegged to a real-world
value, others need to follow suit. Otherwise, you risk losing the realism and
precision you achieved because of the arbitrariness or uncertainty of even
oneother parameter. For example, having exact ranges for crop yield, calorie
consumption per person, and storage capacity is meaningless if the number
of people per household consuming the crop is unrealistic.

In contrast, exploration-type models usually operate without reliance
on exact parameter values. More often, parameters are varied along wide

butarbitrary ranges to explore dynamics under a wide range of conditions.
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What is usually more important is the relative relationship between the
values (e.g., predators derive twice as much energy from sheep than sheep
derive from grass).

Compared to the wide variety of algorithmic choices in mobility models
or modes of cultural transmission, subsistence models tend to be fairly sim-
ilar in algorithms: agents extract resources from patches, patches regrow,
agents live, reproduce, and die depending on their success in gaining en-
ergy. However, the empirical basis for the parameterization of these models
can be highly realistic and detailed. Rainfall records, soil quality, erosion
factors, reproductive probabilities from ethnographically recorded fertility
rates and age structures, daily grams of meat protein needed per person,
and stored food rotting rates have all been intricately measured and incor-

porated into one subsistence model or another.

6.8 Summary

Combiningall of the algorithms we have covered here—from having patches
with varying productivity, degradation rates, harvestingalgorithms, storage
capacities, and energy accrual and costs—can create the base of a model that

can be used to examine many social phenomena. Indeed, the combination

of these simple algorithms creates the basis for most models that examine

subsistence, with only small variations for modeling farming versus forag-

ing societies. The simple versions we coded here can be used to examine any

number of scenarios where their subsistence strategy is key to understand-

ing the society you study.

Many of the more complex agent-based models of human societies are
built on top of subsistence models. For example, the Village Ecodynamics
Project (VEP) has developed a suite of agent-based models using sophisti-
cated subsistence algorithms combined with other dynamics of human so-
ciety (Kohlerand Varien 2012). From a base of algorithms that calculate spa-
tial and temporal variability in productivity, the VEP team has examined a

wide range of topics, including:

* Modeling the domestication of turkey to examine when Ancestral
Pueblo people would have switched from primarily hunting to pro-

visioning with turkey and maize (Bocinsky 2o11).

237



PART I1:

238

LEARNING TO RUN

* A public goods game, where cooperative use of public goods leads to
increasesinagricultural productivity and the development of within-
group hierarchy (similar to the tragedy of the commons; see sec. 6.6;
Kohler, Cockburn, et al. 2012).

* Amodel of how between-group hierarchy could form in regions with
unpredictable agricultural productivity (Crabtree et al. 2017).

* The development of specialization in small-scale societies, allowing
forspecialist farmers and specialisthunters, among others (Cockburn
etal. 2013).

* How culturallearning through social networks was impacted by vari-
ability in landscape productivity over time (Mokom and Kobti 2015).

* The exchange of maize as the basis for the development of social net-
works, which then formed the basis for exchange in all of the above
models (we will build a simplified version of these models in ch. 8;

Crabtree 2015).

Thearray of models built from the VEP’s base subsistence model demon-
strates the utility of building models from the ground up. Even though all
the aspects are tightly interconnected, the productivity of the landscape im-
pacts population size, where agents are located, and all sorts of dynamics of
human interaction, so it is a good idea to introduce them into the model
one by one. By following this paradigm of gradually layering complexity,
the Village models have become a cornerstone for agent-based modeling in
archaeology.

Subsistence models often incorporate external variability, from
stochasticrainfall to dynamically degrading soils; in section 6.2, youlearned
how to incorporate simplified versions of these shifting variables. These
types of variables can be quite complicated, especially if you are using re-
alistic models or weather station data. Again, keep your research questions
in mind as you choose what to include and use the principles of parsimony
to guide your research. The same applies to defining parameter ranges and
values that will then be tested later in experiments (see ch. 9). Note how al-
most all of the models in this chapter examine one specific hypothesis. Even
though their authors were well aware that the lives of past people had many

aspects, they represented them using the simplest model possible that still
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incorporated the necessary variables to examine their hypotheses in ques-
tion.

Finally, we show how we can understand the resilience of past soci-
eties based on how agents respond to changing conditions in the environ-
ment. Agents bounce back from the brink of extinction thanks to planning
ahead (e.g., storage), adaptability (e.g., changes in mobility), or social struc-
tures (e.g., social contracts). Subsistence algorithms provide a strong base
for understanding the function of past societies; the algorithms we present
you with here can be built upon to examine additional questions about re-

silience, vulnerability, and the evolution of socionatural systems. &

End-of-Chapter Exercises
1. How would you model stochastic (asin once every ten years) produc-

tivity shortfalls that many agricultural societies prepare for?

2. Pastpeoplesengaged in multiple different types of sustenance. Model
farmer—hunteragents who require notjust farmed caloriesbuthunted

protein as well. How would that impact the model dynamics?

3. Should other types of necessities be included as well? How would wa-
ter or fuel needs be included in a model of subsistence for an agent?

How can you balance all of these different needs within the code?

4. In the Patch-Choice model, we only included a random-walk. Add
an option for a target-walk, and compare the average return and the

frequency of movement for the random-walk versus the target-walk.

Subsistence Model Zoo

Many of the models below are also available in our code repository.

> Ache Hunting
M. A. Janssen and K. Hill. 2014. “Benefits of Grouping and Coop-

erative Hunting Among Ache Hunter—Gatherers: Insights from an
Agent-Based Foraging Model.” Human Ecology 42, no. 6 (August):
823-835. d0i:10.1007/510745-014-9693-1

Code: https://doi.org/10.25937/66d6-kz70
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> AgModel

L.BartonandI.I. T. Ullah. 2016. “Computer Simulation and the Ori-
gins of Agriculturein East Asia.” Presented at the Seventh Worldwide
Conference of the SEAA June 8-12, 2016, Cambridge/Boston, MA,
USA. Boston, MA.

Code: I. I. T. Ullah. 2015. Agmodel: Version o.3. doi:10.5281/ZENOD
O.17551

AmphorABM
S.A. Crabtree. 2016. “Simulating Littoral Trade: Modeling the Trade

of Wine in the Bronze to Iron Age Transition in Southern France.”

Land s, no. 1 (February): 5. doi:10.3390/landsorooos

Code:
https://comses.net/codebases/c310d351-b629- 46ec-a29¢-eb365aaao8b4/

Cardial Spread

J. Bernabeu Aubién etal. 2015. “Modeling Initial Neolithic Dispersal.
The First Agricultural Groups in West Mediterranean.” Ecological
Modelling 307 (July): 22—31. doi:10.1016/j.ecolmodel.2015.03.015

Code:S. Bergin. 2019. The Cardial Spread Model. COMSES Compu-
tational Model Library. https://www.comses.net/codebases /5278 /

releases/1.1.0/

Cultural Hitchhiking

G. J. Ackland et al. 2007. “Cultural Hitchhiking on the Wave of
Advance of Beneficial Technologies.” Proceedings of the National
Academy of Sciences 104, no. 21 (May): 8714-8719. doi:10.1073/pnas.
0702469104

Code: https://www.pnas.org/content/suppl/2007/05/29/0702469104.
DCr

Diet-Breadth
C. M. Barton. 2015. Diet-Breadth Model from Optimal Foraging The-

ory (Human Behavioral Ecology). https://www.comses.net/codebases/

2225/releases/1.1.0/
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> Fission—Fusion

E. R. Crema. 2014. “A Simulation Model of Fission-Fusion Dynam-
ics and Long-Term Settlement Change.” Journal of Archaeological

Method and Theory 21 (2): 385-404. d0i:10.1007/510816-013-9185- 4

Code, original in R: https://github.com/ercrema/fissionfusion2o14

> Ger Grouper

J. K. Clark and S. A. Crabtree. 2015. “Examining Social Adaptations
in a Volatile Landscape in Northern Mongolia via the Agent-Based
Model Ger Grouper.” Land 4, no. 1 (March): 157-181. doi:10.3390/
land4o10157

Code:
https://comses.net/codebases/27f01923-3884-48ca-81ca-55739f976dco/

> LGM Ecodynamics

C.D. Wren and A. Burke. 2019. “Habitat Suitability and the Genetic
Structure of Human Populations during the Last Glacial Maximum
(LGM) in Western Europe.” PLOS ONE 14, no. 6 (June): €0217996.

doi:10.1371/journal.pone.o217996

Code: https://doi.org/10.25937/na38-tj46

> MASTOC - A Multi-Agent System of the Tragedy of the Commons

J. Schindler. 2012. “A Simple Agent-Based Model of the Tragedy
of the Commons.” In ECAMS 201z Proceedings, edited by K. G.
Troitzsch, M. Moehring, and U. Lotzmann, 44-s0. ECMS, May.

doi:10.7148/2012-0044-0050

Code: https://www.comses.net/codebases/2283/

> MedLanD

C.M. Barton. 2014. “Complexity, Social Complexity, and Modeling.”
Journal of Archaeological Method and Theory 21, no. 2 (June): 306
324. d0i:10.1007/510816-013-9187-2

Code: NetLogo 4.2 version, https://doi.org/2286.0/0abm.3826
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> Multilevel Model of Population Dynamics

N. Gauthier. 2019a. Multilevel Simulation of Demography and Food
Production in Ancient Agrarian Societies: A Case Study from Roman
North Africa. Preprint. SocArXiv, August. doi:10.31235/0sf.io/sbe6a
https://osf.io/sbe6a

Code: https://github.com/nick-gauthier/Silvanus

Piaroa Swidden

P. Riris. 2018. “Assessing the Impact and Legacy of Swidden Farm-
ing in Neotropical Interfluvial Environments through Exploratory
Modelling of Post-Contact Piaroa Land Use (Upper Orinoco,
Venezuela).” The Holocene 28, no. 6 (June): 945-954. doi:to.1177/
0959683617752857

Code available in article’s supplementary material.

Patch-Choice
C. M. Barton. 2013. Patch-Choice Model from Optimal Foraging The-

ory (Human Behavioral Ecology). https://www.comses.net/codebases/

222.4/releases/1.0.0/

Swidden Farming

C. M. Barton. 2014. “Complexity, Social Complexity,and Modeling.”
Journal of Archaeological Method and Theory 21, no. 2 (June): 306—
32.4. d0i:10.1007/510816-013-9187-2.

Code: https://doi.org/2286.0/0abm.3826

Wolf—Sheep Predation

U. Wilensky and W. Rand. 2015. An Introduction to Agent-Based
Modeling: Modeling Natural, Social, and Engineered Complex Sys-
tems with NetLogo. Cambridge, MA: MIT Press, April.

U. Wilensky. 1997. NetLogo Wolf-Sheep Predation Model. Evanston,
IL.

Code:
https://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
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