
PRESSS
F

I

THE SANTA FE INSTITUTE PRESS 1399 Hyde Park Road, Santa Fe, New Mexico 87501 | sfipress@santafe.edu

P L E A S E N OT E :

The contents of this open-access PDF are excerpted
from the following textbook, which is licensed under
a Creative Commons Attribution-ShareAlike 4.0
International License:

Romanowska, I., C.D. Wren, and S.A. Crabtree. 2021.
Agent-Based Modeling for Archaeology: Simulating the
Complexity of Societies. Santa Fe, NM: SFI Press.

This and other components, as well as a complete
electronic copy of the book, can be freely downloaded at
https://santafeinstitute.github.io/ABMA

S C H O L A R S S E R I E S

T H E S A N TA F E I N S T I T U T E P R E S S

PRESSS
F

I

In the course of an excavation, when something comes up out of the ground,
everything is cleared away very carefully all around it. You take away
the loose earth, and you scrape here and there with a knife until finally
your object is there, all alone, ready to be drawn and photographed with
no extraneous matter confusing it. This is what I have been seeking to
do—clear away the extraneous matter so that we can see the truth.

— A G AT H A C H R I S T I E , D E AT H O N T H E N I L E (1 9 3 7)

TO F U L LY U N D E R S TA N D N OT O N LY T H E PA S T, but also the trajectories,
of human societies, we need a more dynamic view of human social systems. Agent-
based modeling (ABM), which can create fine-scale models of behavior over time
and space, may reveal important, general patterns of human activity. Agent-Based
Modeling for Archaeology is the first ABM textbook designed for researchers
studying the human past. Appropriate for scholars from archaeology, the digital
humanities, and other social sciences, this book offers novices and more experienced
ABM researchers a modular approach to learning ABM and using it effectively.

Readers will find the necessary background, discussion of modeling techniques
and traps, references, and algorithms to use ABM in their own work. They will
also find engaging examples of how other scholars have applied ABM, ranging from
the study of the intercontinental migration pathways of early hominins, to the
weather–crop–population cycles of the American Southwest, to the trade networks
of Ancient Rome. This textbook provides the foundations needed to simulate the
complexity of past human societies, offering researchers a richer understanding of
the past—and likely future—of our species.

AGENT-BASED
MODELING FOR
ARCHAEOLOGY

Romanowska
Wren

Crabtree

I Z A R O M A N OW S K A

C O L I N D . W R E N

S T E FA N I A . C R A B T R E E

[AGENT- BASED MODEL ING FOR ARCHAEOLOGY]
Simulating the Complexity of Societies

The color figures in this open-access version of
Agent-Based Modeling for Archaeology have
been adapted to improve the accessibility of the
book for readers with different types of color-
blindness. This often results in more complex
color-related aspects of the code than are out-

lined within the code blocks of the chapters. As
such, the colors that appear on your screen will
differ from those of our included figures. See the
“Making Colorblind-Friendly ABMs” section of the
Appendix to learn more about improving model
accessibility.

R E G A R D I N G C O LO R :

1

T H E F O U N D A T I O N A L S T E P S O F
B U I L D I N G A N A G E N T - B A S E D M O D E L

1.0 Introduction
In this and the subsequent two chapters, we will use examples of simula-
tions typical of archaeological agent-based OVERVIEW

▷ Intro tutorial in NetLogo
software: INTERFACE and
CODE tabs, agents, and
procedures
▷ Definitions of modeling,
simulation, and algorithm
▷ What is pseudocode?
▷ Types and purposes of
models

modeling. Our aims are to:

• familiarize you with the agent-based modeling technique and
some vocabulary specific to complexity science and simulation;

• introduce the basic principles of coding; and
• explain the epistemological position of ABM in scientific practice and
its role in the wider field of complexity science.

Thus, by the end of Part I: Learning to Walk,1 you will have a good
grasp of what ABM is all about, what it’s for, and how can it benefit archaeo-
logical inquiry. You will also be able to build a basic simulation and un-
derstand the challenges involved. Contrary to many textbooks that begin
with background, each chapter will start with a hands-on practical
element—implementing a model in NetLogo—and only later provide the-
oretical explanation. In our experience, our students gain a much better
understanding of the concepts related to simulation and complexity sci-
ence once they have tried them out for themselves first. If, while working
through these chapters, you feel as if you do not fully understand what
you are doing, reading ahead a few pages will likely clarify the situation, as
each chapter is organized as a self-contained unit; trust that all will fall into
place by the end of the part. Important note: When in doubt about any as-
pect of coding, head straight to the NetLogo documentation. In
particular, the NetLogo Dictionary2 and the Programming Guide3 will be

1 You can find all code written in this chapter in the ABMA Code Repo:
https://github.com/SantaFeInstitute/ABMA/tree/master/ch1

2https://ccl.northwestern.edu/netlogo/docs/dictionary.html
3https://ccl.northwestern.edu/netlogo/docs/programming.html

19

https://github.com/SantaFeInstitute/ABMA/tree/master/ch1
https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/programming.html

P A R T I : L E A R N I N G T O W A L K

of great help whenever you feel lost. They may initially look confusing but
you’ll quickly get to know them well.

To begin our tutorials, we will start with a simple model of human dis-
persal. Models of human movement lend themselves particularly well to
simulation, especially ABM. They concern an inherently spatial and
dynamic process, characteristics that make ABM particularly useful in com-
parison with other modeling techniques. To illustrate the process of devel-
oping a simulation, wewill use awell-knownmodel by Young andBettinger
(1995).Model:

Young & Bettinger (Y&B)
Dispersal

TEST
ABMA Code Repo:
ch1_Y&Bdispersal

It was designed to investigate the first dispersal of humans out of
Africa. This model is a good example of the so-called “models from first
principles” or “toy models”—that is, simple, abstract models investigating
basic dynamics of a system, which became very popular in archaeology in
the late 1990s (Lake 2014). We will implement the Young and Bettinger
model in a NetLogo tutorial, taking you through the full process of model
development. Finally, wewill look back and use the experience gained to de-
fine such terms asmodel and simulation. We will discuss how these tools fit
within the scientific process and how they can aid archaeological research.

1.1 The Model: Young & Bettinger’s Simulation of Dispersal
In their 1995 paper, Young and Bettinger (Y&B henceforth) used a simple
diffusion model to investigate the out-of-Africa dispersal of modern hu-
mans (Gamble 2013). The authors asked whether the patterns in the
archaeological record could be explained using the most basic principles
of population growth and spread. Their simulation is not an agent-based
model; instead, theYou can find a detailed

description of the
Fisher-Skellam-KPP model

in chapter 4.

authors used an equation known as the Fisher–Skellam–
KPP model. Using equation-basedmodels as the foundation for building an
agent-based model is common, as they often provide a very clear baseline.

The main Y&B algorithm creates a simple diffusion wave in all direc-
tions from the point of origin (East Africa) following a gradient, frommore
densely inhabited areas to those that are less populous. In amechanism sim-
ilar to that of a spreading wildfire, the population moves away from the
point of origin in all directions and without turning back on itself.

If this was the whole model, we could easily predict the results—areas
closer to the point of origin in a strict geographical distance will be inhab-
ited earlier than those farther away from it. However, the archaeological

20

Chapter 1: Building an Agent-Based Model

data indicate that humans arrived in some areas (e.g., Europe) later than
in others (e.g., Southeast Asia) irrespective of their geographical proxim-
ity. Clearly, a factor other than geographical distance must have influenced
migration, slowing down or speeding up the dispersal in certain regions.
Y&B hypothesized that the most plausible factor is the environment:
species spread more rapidly across familiar environments than those to
which they have not yet adapted. To account for that, the population
growth rate andmobility values were set higher in the tropics and semitrop-
ical conditions similar to the starting area of the dispersal and lower in the
northern, less familiar regions.

Once the model was run, the pattern of dispersal was compared to
archaeological data consisting of locations of archaeological sites and the
dates of earliest traces of Homo sapiens in each region. The two patterns
(often referred to as artificial data and empirical data) matched very well.
But what does it mean in terms of our understanding of the out-of-Africa
dispersal? Had the Y&B model captured the dynamics of that process? We
will talk about the knowledge generation process in simulation studies at
the end of this chapter.

Let’s look at themodel inmore detail now.Wewill write an algorithmic
algorithm: a sequence of
instructions given to a
computer.

description of it tomake the subsequent implementation in code easier. An
algorithm is simply a set of instructions like a cooking recipe: “Take A, mix
with B, add C, and you get D” (see ch. 4 for a more thorough definition).
We often write algorithms in pseudocode, pseudocode: a simplified

notation of the structure of
the code.

that is, in a way that resembles
the syntax of computer code but is readable to humans. You can then use
it as a step-by-step summary of what the model does.

Almost all ABM simulations consist of two phases. First is the initializa-
tion phase, where you define the world and its inhabitants, effectively set-
ting up the state of the world at time step zero. Let’s write out our model’s
setup in pseudocode: TEST

TEST
PSEUDOCODE BLOCK 1.0

Set parameters [population-growth = popG
initial-pop-size = n
initial-location = (x,y)]

21

P A R T I : L E A R N I N G T O W A L K

TEST
TEST

PSEUDOCODE BLOCK 1.0
(cont.) Create n agents

For each agent, A,
Place A in (x, y)

Second, we define the run phase as the clock starts ticking and at each
time step the world undergoes a series of events, such as climate change and
agents’ actions. In pseudocode:TEST

PSEUDOCODE BLOCK 1.1
At each time step, T,

For each agent, A,
Draw random number, N, between 0-1
If N < popG AND
If there is at least one adjacent cell, C,
(x±1, y±1) that is empty

Create new agent, B,
Place B on cell C

The pseudocode says that at each time step, each agent will create a new
agent if two conditions are met. The first condition is expressed proba-
bilistically. Let’s imagine we define population growth as 0.1, aiming at a
population that grows by approximately 10% over the course of one time
step. Each agent draws a random number between 0 and 1; if this number is
between 0.0 and 0.1, then the condition is met. The probability that a ran-
dom number between 0 and 1 is lower than 0.1 is about 10%, so on average
about 10% of agents could produce an offspring. However, we only allow
them to do so if there is an empty cell available in their immediate neigh-
borhood that can be colonized. Read carefully through the pseudocode, en-
suring that you understand all abbreviations and can point out where they
are defined. You have probably noticed that the pseudocode above is a sim-
plified version of the Y&B model that does not yet have the environmental
factor built in. We will start with this simple version and then expand it as
we go. This is a common approach to buildingmodels: you start simply and
gradually layer on complexity (see ch. 5).

22

Chapter 1: Building an Agent-Based Model

Figure 1.0. Main elements of NetLogo’s graphical user INTERFACE tab.

N E T L O G O I N T E R F A C E

NetLogo is used widely across virtually all scientific disciplines. It is often
the first choice when creating proof-of-concept models, but it can also be
used for modeling systems to their full complexity. It is particularly preva-
lent among social and life scientists (Hauke, Lorscheid, and Meyer 2017)
and is by far the most popular agent-based modeling framework among ar-
chaeologists (Davies andRomanowska 2018). Logo—the ancestral language
ofNetLogo—was developed as an educational tool, so it resembles a natural
language, making it easy to read and write. Nevertheless, if this is your first
attempt at computer programming, This heritage is why

NetLogo refers to agents
as turtles and to grid cells
as patches.

youmay initially feel intimidated. Fear
not: you will rapidly grow accustomed to writing code. We will go particu-
larly slowly with the coding challenges in this chapter to ease you in.

Let’s start with the NetLogo program itself (fig. 1.0). When you open
it, you will immediately notice three tabs: INTERFACE, INFO, and CODE. In
the next few pages, we will look at these in turn.

The INTERFACE tab consists of:

• The VIEW panel for watching the simulation;

23

P A R T I : L E A R N I N G T O W A L K

Figure 1.1. The dialog box for adding a GO button. Note that the FOREVER box is
checked.

• A few buttons, choosers, and a slider along the top of the window;
and

• The COMMAND CENTER toward the bottom of the window.

This INTERFACE tab is where you will run and observe the dynamics of
your model while the CODE tab is where you will write out the code of the
model itself. You will flip back and forth between these tabs constantly as
we continue. Finally, when you’re finished you should describe the model
and how to use it in the INFO tab (there are headings to get you started).

S E T U P P R O C E D U R E

The two phases we have seen in the pseudocode (initialization and run) are
usually called setup and go in the NetLogo lingo. In the setup proce-
dure, we will create the starting population of agents and build their envi-
ronment. The go procedure is themainTIP

Right-click anywhere on
the white space in the
INTERFACE to create a

button.

simulation loopwith all processes
that the agents and the environment undergo at each time step.

We will activate (call) those procedures using buttons. Right-click any-
where on the white space and choose BUTTON. A dialog box will pop up (fig.
1.1). Type setup in the COMMANDS box and click OK. Follow the aboveClick the FOREVER box if

you want the code to
repeat indefinitely.

step
to create a second button and write go in the COMMANDS box. This time
also tick the FOREVER box.

Ticking FOREVER means that this actionwill repeat until the simulation
ends or the user toggles the button off again by pressing the GO button a

24

Chapter 1: Building an Agent-Based Model

second time. You can see that the text on both buttons has instantly turned
red, indicating an error. The NetLogo interpreter does not recognize the
code because go and setup have not been defined yet. Let’s move to the
CODE tab to fix it.

The CODE tab is dominated by white space. This is where we write code
directing the flow of the simulation. A procedure consists of all

code enclosed between
to and end .

To do so we use commands and re-
porters. Commands define the actions of an agent, while reporters calcu-
late and report a value. We will come back to reporters in chapters 2 and
3. There are two types of commands and reporters in NetLogo: primitive: built-in

procedure or variable
name.

the user-
defined procedures and built-in ones called primitives. The NetLogo Dic-
tionary provides a description of all existing primitives and includes sample
code.4 TIP

To check a primitive’s
documentation, move your
cursor so that it is within
the word and press F1.

First, to define a procedure we use the keywords to and end . Like
brackets they mark the beginning and the end of a procedure. In addition,
we can already specify one action that the simulation has to perform at each
time step: move the clock forward after each step.

The tick primitive is often used to mark the end of all procedures in
the current time step and to start a new one. It moves the time forward and
triggers many commands that are called once per time step; for example, it
updates plots. Type the following in the CODE tab: TEST

CODE BLOCK 1.2 TEST

Click CHECK every time
you write new code or
change the existing one.

to setup
end

to go
tick

end

If you now click the PROCEDURES list at the top of the screen, you’ll find
that setup and go are listed there. Next to PROCEDURES is the debugger
button, CHECK, which when clicked will check if the code’s basic syntax is
correct. Click it now. If it throws an error, DON’T FORGET

If you do not clear-all ,
your model will include
turtles and patches from
previous runs.

look at the line it highlights and
make sure your spelling is correct.

Now, let’s build the initial state of our model in the setup proce-
dure. This procedure usually starts with the clear-all primitive, which

4 https://ccl.northwestern.edu/netlogo/docs/dictionary.html

25

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

P A R T I : L E A R N I N G T O W A L K

Figure 1.2. A small 5× 5 patch landscape with randomly located agents and shaded
patch color. We have added numbers that show the (X,Y) coordinates of each patch.

removes any remnants of the previous run, including clearing plots and
monitors, and finishes with reset-ticks , which resets the clock to zero.
Write them in separate lines after setup but before end .

Now that all the housekeeping has been taken care of, we can move to
defining the elements of the simulation. If you look back at the pseudocode,
you’ll see we need to create a number of agents. In NetLogo, agents are re-
ferred to as turtles, and the grid cells on which they live are called patches.
This is a holdover from when NetLogo was developed to teach program-
ming to children.You can play with the

setup in the ch1_patches
model in the ABMA Code

Repo.

Wewill use the create-turtles primitive to bring our
agents to life. We also need to position the agents somewhere in the world
using the setxy primitive. Let’s place them on a random cell between cells
(0, 0) and (5, 5). Refer to figure 1.2, where we labeled the shaded patches to
give you an idea of the area encompassed by random 5 random 5 . Inside
the setup procedure, type:

26

Chapter 1: Building an Agent-Based Model

TEST

CODE BLOCK 1.3
TEST

random 5 chooses one
value at random among 0,
1, 2, 3, and 4.

to setup
clear-all
create-turtles 20 [

setxy random 5 random 5
]
reset-ticks

end

Go back to the INTERFACE tab and hit SETUP. Do your agents appear?
The brackets after create-turtles can also You can check the

documentation of
create-turtles in the
NetLogo Dictionary.

enclose features (variables)
of the agent other than its location, for example, color , size , or
shape . All of these built-in variables have default values, but you can also

customize them, as in this example: TEST

CODE BLOCK 1.4 TEST

TIP
Brackets are square
[...] , parentheses are
round (...) , and curly
brackets are . . . curly
{...} .

to setup
clear-all
create-turtles 20 [

set color random 140
set size 2
set shape "turtle"
setxy random 5 random 5

]
reset-ticks

end

When you’re done, hit the CHECK button to make sure there are no er-
rors and move back to the INTERFACE tab. Click the SETUP button again.
Your agents are clustered to the upper right from the middle point of the
screen, because by default the patch at point (0, 0) is located in the center.
Instead, we would like the agents to start from the corner. The map’s Point of

Origin (0,0) can be
moved to any one of the
corners or to the center of
the VIEW.

Click the SET-

TINGS button in the top right corner of the INTERFACE tab. A window will
pop up. Change the LOCATION OF ORIGIN to the bottom left corner and
untick the WORLD WRAPS HORIZONTALLY and WORLD WRAPS VERTICALLY

boxes. This will make our map a flat surface. If you hit SETUP now, all the
agents should cluster in the bottom left corner.

27

P A R T I : L E A R N I N G T O W A L K

G O P R O C E D U R E

The body of all simulations, the go procedure, is a loop of commands that

repeat at each time step.ask turtles [...] will
ask each turtle (in random

order) to perform the
actions specified within

the square brackets.

All commands aimed at agents in NetLogo are
initiated by the word ask , followed by the entity that is to perform the
tasks. The code block that defines these tasks is enclosed in square brackets
[] . In this piece of code, we’ll ask all turtles (ask turtles) to turn
right (rt) by a random number of degrees between 0 and a full circle
(random 360) and go forward one step (fd 1). Write this code inside
the go procedure, before tick , so that it looks like code block 1.5:TEST

CODE BLOCK 1.5
to go

ask turtles [
rt random 360
fd 1

]
tick

end

The number 1 after fd indicates that the turtle shouldmove forward
by the length of one patch.Many procedures require

input values, e.g., fd 1 or
create-turtles 10 .
Consult the NetLogo

Dictionary to see what
type of input is required.

Hit CHECK, move to the INTERFACE tab and hit
GO. You can use the SPEED slider at the top of the screen to make the simu-
lation slower so you can see the turtles’ movement pattern more clearly.

In the Y&B model, two factors drive the wave of advance. One is the
random mobility that we have just coded, and the other is population
growth. Without growth, the population will not be able to cover a larger
region; instead, they will become like butter scraped over too much bread.
So next we will code in population growth through reproduction, and then
put the two together.

I N T R O D U C I N G T H E I F S T A T E M E N T

In the previous step, the movement happened with every tick of the model.
We could do the same with reproduction, but we would rather be able
to control how often reproduction occurs. This is where an if statement
comes in. An if statement consists of two elements: a condition and a code
block. The if statement’s code block is only run if the condition is fulfilled
(true). If the condition is false, the code is simply not executed.

28

Chapter 1: Building an Agent-Based Model

Figure 1.3. To add interface elements to your model (buttons, switches, sliders, etc.)
right-click where you want to place them (within the white area) and a drop-down
menu will appear. Alternatively, click the ADD button and select the element from the
drop-down list, before left-clicking the desired location.

While we work on the reproduction part of the code, we will comment
DON’T FORGET
Remember to comment
out the rt random
360 fd 1 code! The
commented code will turn
light gray.

out the turn and move commands. We will tell NetLogo not to execute
these lines of code by placing a semicolon (;) at the beginning of the line.
Commenting out code is usually safer than just deleting it, as we may need
it later. You should also use the semicolon to write short notes next to the
code that explain what it does.

Comment out the first two lines after ask turtles by adding a semi-
colon at the start of each line before the movement commands. Then add
the if-conditional statement, so that your procedure looks like this: TEST

CODE BLOCK 1.6
TEST
random-float 1 will give
out any value larger than
0 but smaller than 1, e.g.,
0.54321.

ask turtles [
;rt random 360
;fd 1
if random-float 1 <= pop-growth [reproduce]

]

29

P A R T I : L E A R N I N G T O W A L K

The primitive random-float selects a random decimal number, or
floating point number, up to the number you specify. This primitive is
commonly used to represent probabilityTIP

“Nothing named
pop-growth has been

defined” indicates NetLogo
cannot find anything

called pop-growth . First
check your spelling, then
see if you have actually
defined the procedure.

where, for example, 0.20 indicates
a 20% chance. If you now click CHECK, NetLogo will give you an error.
We will solve it by making a slider in the INTERFACE tab. Switch to the
INTERFACE tab, right-click anywhere on the white background, and choose
SLIDER from the drop-down menu (fig. 1.3). Type pop-growth into the
GLOBAL VARIABLE box. We want pop-growth to be a percentage chance
of reproduction, so we set minimum to 0, maximum to 1, and increment
to 0.01. Set the default value to 0.20 for now. We will experiment with it
later.

Next we switch back to the CODE tab to write our reproduction proce-
dure.Built-in commands show in

color. User-defined
commands are black.

Because reproduce is not a NetLogo primitive, we need to define it
ourselves.Wewill use the hatch primitive. A hatched turtle is a clone of its
parent, and so will inherit all of its parent’s characteristics, called state vari-
ables, like color , size , and shape .state variable: attributes

of a model’s entities, such
as age, energy, color, etc.

We will change the newly hatched
agent’s color a little at birth just for visual effect. NetLogo’s TOOLS menu
has a COLOR SWATCHES option, which shows how the numbers match up
to the colors. Add the following code after the end of the go procedure:TEST

CODE BLOCK 1.7
to reproduce

hatch 1 [
set color color + 0.1

]
end

The repeated color is not a typo; it needs to be there twice. You can
read it as “ set my color to my current color plus a little brightness
(+ 0.1).”

Check the code and move to the INTERFACE to click SETUP and then
GO. It won’t look like much is happening because we commented out the
movement code before. Instead, the new turtles inherit their parent’s xy
position, creating turtle piles.Right-click on a turtle and

choose INSPECT. You’ll see
there are multiple turtles

on each patch.

If youwant to see the turtles moving around,
uncomment the code describing movement by deleting the semicolons
(don’t forget to comment it out again). Young and Bettinger’s model actu-
ally used a population gradient to decide where new groups would

30

Chapter 1: Building an Agent-Based Model

move, but our version will be a close approximation in which turtles hatch
onto empty cells at birth. Update the reproduce procedure: TEST

CODE BLOCK 1.8
to reproduce

if any? neighbors with [count turtles-here = 0] [
let empty-patch one-of neighbors with

[count turtles-here = 0]
hatch 1 [

set color color + 0.1
move-to empty-patch

]
]

end

Let’s look at the code a bit more closely. You have probably already rec-
ognized that we introduced an if statement. First, it checks for an agentset,
that is, if there are any? neighboring cells (neighbors) with no tur-
tles on them (with [count turtles-here = 0]). It returns a value of
true (yes, there are), or false (no, there are not). If true , it assigns
(let) one of those cells (one-of neighbors) to a temporary variable
called empty-patch , and then asks the newly hatched turtle to move-to
that empty-patch . The NetLogo primitive neighbors refers to the
eight cells that are touching the current cell (so-called Moore neighbor-
hood; black and dark gray patches in fig. 1.4). There is also a neighbors4
version that looks at the four cells in cardinal directions (so-called vonNeu-
mann neighborhood; only the black patches in fig. 1.4). The von Neumann

neighborhood consists of
four cells and the Moore
neighborhood eight
surrounding a central cell.
In GIS, these are
sometimes referred to as
rook and queen
neighborhoods after the
moves of chess pieces.

Including the com-
mand with followed by a condition in square brackets further reduces the
number of potential birth cells by only looking at those without turtles on
them. Note here that because of the move-to primitive, the turtles always
sit at the very center of a patch, while the turning (rt) and forward (fd)
method we coded earlier results in turtles moving all over the patches. We
will discuss the differences more in chapter 4; for now, just note that the
two approaches are equally valid but produce slightly different results.

Next, go back to the INTERFACE tab and run the model a few times (i.e.,
use the SETUP and GO buttons). What patterns do you see?

31

P A R T I : L E A R N I N G T O W A L K

ABMA Code Repo:
ch1_patches

Figure 1.4. Two terms for defining neighboring patches in ABM are von Neumann
neighborhood (the four cardinal cells) and Moore neighborhood (the eight black and
dark gray cells bordering the center). Note that the four dark gray cells are actually
slightly farther away if measured from patch-center to patch-center (∼1.41 map units
rather than 1.00 to the black patches).

• Do all turtles contribute equally to the dispersal wave? Why or why
not?

• What happens if a turtle tries to reproduce but there are no empty
patches in the neighborhood?

• What happens when you change the population growth rate? Do the
higher values always translate into faster dispersal? (Hint: You can
compare the number of ticks before the whole world is occupied).

1.2 Theory of Simulation & Modeling
Thus far, we have used the termsmodel and simulation almost interchange-
ably. However, they are not the same thing. A model is a simplified repre-
sentation of a real system.model: a simplified, often

abstract, representation of
a system.

A toy plane is a model, a map is a model, and
a Paleolithic handaxe made by a modern experimenter is a model. All of
these things aim to preserve some, but not all, aspects of the real thing. For
example, the toy airplane aims to look like a real plane but is much smaller,
does not have a real engine with fuel inside, and probably cannot actually
fly. This does not prevent the end user (e.g., a child) from considering it an
aircraft. This is the very nature of models: they are shorthands for the real

32

Chapter 1: Building an Agent-Based Model

thing in which only certain aspects of reality are represented. There are no
hard-and-fast rules about which aspects should be included in the model.
Rather, the choice is driven by the particular needs of its user. A child will
want their plane to have painted windows; an adult model plane enthusiast
may insist on accurate side markings; and an engineer optimizing the wing
will not give the color a passing thought.

Let’s look again at the model we just built. We have ignored the vast
majority of human behavior. Although we do not doubt that people in the
past hunted prey, chatted around a fire, and taught their children how to
knap stone tools, none of these behaviors has been included in the model.
Instead, their lives have been simplified to just two aspects: reproduction
and movement. Why? Because the original research question was whether
the basic demographic rules governing any living population could have
resulted in the observed data pattern—the dispersal of hominins across the
globe—so we have modeled just these two elements.

simulation: a dynamic
model of a system, that is,
a model that includes
dynamics which change
the state of the model over
time.

A simulation is a specific type ofmodelwith an extra dimension of time.
We use simulations to observe the changes and the evolution of themodel as
well as its final outcome. Thus, the toy airplane is not a simulation, but one
can imagine using an upscale version of it in a wind tunnel to simulate the
drag generated under differentwind conditions.Why dowe usemodels and
simulations? The three main functions of simulation are hypothesis test-
ing and prediction, theory building, and data exploration (Premo 2010),
although most models fall somewhere in between these three objectives.

First, simulation is often used in a hypothesis-testing capacity. In many
cases, observing the real system is impossible, a problem very familiar to
archaeologists. However, we are not the only ones who do not have direct
access to the system we study. Models are often built for

inaccessible systems that
cannot be observed or
experimented on directly.

Long-term societal change, the evolution of
species, microscopic interactions occurring in human cells, black holes, or
the evacuation of a building during fire emergency are all processes that
are difficult to observe directly or experiment on. In these cases, models
represent our hypotheses about the system that may or may not be correct,
and thus require testing. Instead of experimenting on a real system to test
such hypotheses, we construct digital, computational, models.

Second, simulation supports theory building when interactions
between the system elements are not fully understood. For example,
although the stock exchange consists of agents who follow a simple be-

33

P A R T I : L E A R N I N G T O W A L K

havioral rule (i.e., “buy low, sell high”), we cannot easily predict financial
crashes and fluctuations, revealing our ignorance about some elements of
the system. In these cases, we build simulations to better understand the
system itself and its underlying dynamics. This process is known as theory
building because it establishes the logic of a hypothesis rather than its rele-
vance to the real world.

Finally, in data exploration the goal is to uncover the underlying
processes behind patterns identified in data. Data analysis gives us tools
to establish co-occurrence or the existence of a relationship between dif-
ferent variables. However, statistical and analytical techniques are
neither designed nor able to establish causality or to determine what
mechanism connects different phenomena. You might have heard the

Simulation is a principal
tool for evaluating causal

relationships.

statisticians’ mantra “correlation is not causation.” Simulation acts as a
virtual lab to reveal causation, that is, processes that lead to particular
data patterns. You get correlation from analyzing data, while causation
can only be inferred from modeling.

You may have already identified that the Y&B model falls some-
where between the hypothesis-testing and the theory-building func-
tions of simulation; it tests a particular theory about the fundamental
processes driving the system in question.

Young and Bettinger’s simulation is a model from first principles,
where first principle describesModels from first

principles simulate how
the world would look

under the most basic of
assumptions.

the simplest and most plausible of as-
sumptions, also referred to as the first-order approximation (meaning at
the most basic level of description). The model does not prove that the
observed empirical pattern (archaeological data) is a result of the mod-
eled process; rather, it confirms its plausibility and general agreement
with the data, demonstrating that the modeled process could have pro-
duced a data pattern similar to the observed one. It does not exclude the
possibility that other processes would prove to be equally or even more
successful inequifinality: multiple past

processes could equally
have led to the same final

archaeological pattern;
note, though, that not all
are equally likely. This

also explains why
“correlation does not imply

causation.”

replicating the data pattern. This is known as the equifinal-
ity problem common to a lot of archaeological inference. To assess the
plausibility of other scenarios, respective models need to be built and
their results compared to the one that currently best matches the data.
The Y&B model has the advantage of being exceedingly simple, a char-
acteristic that is highly valued in terms of explanation, even if it is not
necessarily decisive.

34

Chapter 1: Building an Agent-Based Model

The beauty of formal models such as this one is that it is easy to
build upon them, thus continuously gaining new insights. If, as is usu-
ally the case, the answers you have uncovered have only spurred more
questions, you can extend and modify the model to address them. This
iterative process of model building, testing, and rejecting forms the cor-
nerstone of all scientific inquiry in archaeology, as in any other branch
of science. But we need not stop there. In the next section we will finally
look at Y&B ’s hypothesis that environmental zones shaped the out-of-
Africa dispersal.

1.3 Modeling a Landscape
We advanced far with Young and Bettinger’s model, but our implemen-
tation is missing an important part: the environment. The distribution
of habitats or environmental zones (biomes) is not just about giving a
visual background to our dispersing population; there are also some
significant barriers to dispersal, such as oceans, lakes, and ice sheets,
for which we should account. Dispersing populations will need to go
around these areas and funnel through some geographic bottlenecks.

First, we need data showing the world as it was during the time pe-
riod, that is, with sea level 85 meters lower than today. The map we
are using was derived from a global elevation and bathymetry dataset
(Becker et al. 2009; Smith and Sandwell 1997), which you can download
from our model repository.5 Once you download the file, DON’T FORGET

The map must be in the
same folder as the model
for NetLogo to find it.
Otherwise you have to
write the full or relative
file path.

make sure you
place the map in the same folder where you are saving your NetLogo
model (Y&B_dispersal); otherwise, you will get an error that NetLogo
cannot find the file.

Once we load a map into our NetLogo model, we must achieve the
following:

1. We want the map image to be imported as actual data, not just as
a background image.

2. We need to prevent agents from moving into uninhabitable
patches, such as water.

5https://github.com/SantaFeInstitute/ABMA/tree/master/ch1.1/

35

https://github.com/SantaFeInstitute/ABMA/tree/master/ch1.1/

P A R T I : L E A R N I N G T O W A L K

If you have ever worked with geographic information systems (GIS),
you already have some experience with gridded raster data. If not,NetLogo can handle both

raster and vector data
using the GIS extension

(see ch. 9).

all you
need to understand here is that the map is a grid of cells, and that we can
assign each cell to a patch by taking a number corresponding to its
color value. We need to import our map into NetLogo so that numeric
values can be assigned to each patch ’s pcolor variable. NetLogo has
a command to do this easily. Within the setup procedure, before we
create any turtles but after the clear-all command, add the following
line so that it looks like this:

TEST
CODE BLOCK 1.9

.
We use ellipses (...) in
code blocks to show that
this is added to existing
code. Don’t type these
ellipses into your code.

to setup
clear-all
import-pcolors "ch1_map.png"
...

Click SETUP on the INTERFACE tab. We can see the map now, but
it doesn’t fit our VIEW panel very well. The map image we imported is
600 × 351 pixels, and we would like each pixel toCheck the file properties

Windows: right-click >
Properties > Details

Mac: right-click > Get Info
> More Info > Dimensions

be assigned to one
patch. Click the SETTINGS button and set the max-pxcor to 599 and
the max-pycor to 350 (fig. 1.5). Why not 600 and 351? NetLogo space,
like all Cartesian spaces, starts at a point (0, 0). Thus, the first column
number is 0, the second is 1, etc. Whether it is the primitive random
or the screen dimensions, NetLogo (as well as our book) always starts
counting from 0.

Since the earth is a globe, also check the WORLD WRAPS HORIZON-

TALLY box (but not WORLD WRAPS VERTICALLY—this would turn our
world into a torus-ring doughnut shape). Check the text under the black
square inThe PATCH SIZE setting

regulates how the VIEW
panel looks on your

screen; it does not change
the number of patches.

the MODEL SETTINGS panel to verify that everything is correct.
It should state “Vertical Cylinder: 600 × 351.” Next, click OK. If your
VIEW panel is far too large now, reopen MODEL SETTINGS and set the
PATCH SIZE to a smaller value.

TIP
In NetLogo colors are

represented by numbers
from 0 to 140, but you can

also refer to them using
keywords like white ,

green , sky , or violet .

Click SETUP once more and verify that the map fits well. Run the
model again, and you’ll notice a couple of things: first, it takes a lot
longer to finish the run, because there are a lot more agents and patches
now, and second, the agents are completely ignoring our map.

Y&B ’s dispersal model keeps things simple by coding patches as
either 1 for land or 0 for water or ice sheets. All we need to know is the

36

Chapter 1: Building an Agent-Based Model

Figure 1.5. The MODEL SETTINGS box controls the size of the patches, position of
the grid origin (one of the corners, center, etc.), and edge-wrapping options.

pcolor assigned to water on the imported map. Right-click on any

water patch and choose INSPECT PATCH X Y from the drop-down DON’T FORGET
Parentheses are often not
necessary, but they help to
keep the code readable—
an important consideration
for future readers of your
code (including yourself six
months from now).

menu,
where x and y correspond to the coordinates of the water patch you
clicked on. An INSPECTION panel will come up that provides variable
values of that patch, as well as a close-up view of the patch. In our case,
the pcolor value is 9.9, corresponding to white . We will use that
value to tell turtles where not to go.

We have two things left to do: move the turtles’ start location to
eastern Africa, and then tell the turtles that they can only move on
land. In the VIEW panel, right-click on any cell in East Africa and note

37

P A R T I : L E A R N I N G T O W A L K

its x, y coordinates. In setup , change the x, y coordinates inside the
create-turtles command to (your_X_coordinate + random 5)

like this:TEST

CODE BLOCK 1.10
setxy (360 + random 5) (170 + random 5)

Next, go to the reproduce procedure and change the following
lines to further limit the set of patches the turtles are evaluating for
their offspring to only include land patches:TEST

CODE BLOCK 1.11
to reproduce

if any? neighbors4 with
[count turtles-here = 0 and pcolor != white] [

let empty-patch one-of neighbors4 with [
count turtles-here = 0 and pcolor != white]

...

The ! = means “does not equal,” which tells the agents not to con-
sider any white cells for their offspring. The and , known as a log-
ical operator in computer programming, is a way of combining criteria
within the conditionwhere both have to be true. To prevent agents from
jumping diagonally across bodies of water, we will also switch to the
neighbors4DON’T FORGET

Change neighbors to
neighbors4 to avoid

unintended moves over
diagonal boundaries.

primitive, which means agents only move in cardinal di-
rections. Check your code, then switch to the INTERFACE tab and run the
simulation a few times (fig. 1.6). What do you notice about the dispersal
wave as it passes through geographic bottlenecks like the Sinai Penin-
sula or south of the Black Sea? What pattern do you notice in the agent
colors, and what could this represent?

Note that we wrote the reproduce procedure to be agent-specific,
thus only turtles can perform the procedure. We know this because it
contains the turtle-specific primitive hatch .If you open hatch in the

NetLogo Dictionary, you’ll
spot a turtle icon.

At each time step, each
turtle (in random order) assesses their own situation (e.g., if any?
neighbors4) and performs their actions accordingly. If you stop to

think about it, though, who is doing the asking?observer: an agent that
builds and controls all

other simulation objects.

NetLogo refers to this
as the observer. Many commands can only be called by the observer,
such as clear-all , tick , and our setup and go procedures. We’ll

38

Chapter 1: Building an Agent-Based Model

Figure 1.6. The population of agents disperses from eastern Africa and begins to spill
out into Eurasia. Note that the agents are small enough that they almost look like a
continuous surface.

discuss how to control which variables belong to agents, patches, or the
observer in the next chapter.

Finally, reflect on how you wrote your code. Just as you put thought
and effort into creating a clear and easy-to-follow methods section in a
scientific paper, you must also create code that can easily be followed
by an outsider. NetLogo doesn’t care about white spaces, so you could
write this whole model in one very long line of code. This is a bad idea,
though. Like the methods section of your paper, code tends to get more
and more complicated as you progress, so keeping it well laid out will
spare you a lot of frustration. We have not included comments in the
code blocks here, but if you check the model’s code in the ABMA Code
Repo you’ll see inline documentation.

1.4 Summary
The simulation we built in this chapter is a model of human dispersal. It
is a model because it is a simplified representation of the behavior of past
human groups including their mobility and reproduction. Many possi-
ble factors influencing dispersal were deliberately left out of our model
because wewere using it to test the hypothesis that the pattern and speed
of human dispersal across the world was primarily driven by population

39

P A R T I : L E A R N I N G T O W A L K

growth and undirected movement. To test this hypothesis, we must pa-
rameterize the model by assigning reasonable values to our population
growth rate and movement distance relative to the time step. You can
consult Young and Bettinger’s paper for those values. If the simulated
population arrives in Israel, Italy, China, Indonesia, Alaska, Chile, and
other locations around the date of the known first occupation of those
regions, then we will have demonstrated the plausibility of the hypoth-
esis.

Our simulation results may also have implications for theory building
concerning early human dispersal. If the model exposes particular patterns
in the spreading dispersal wave that disagree with archaeological data, this
spurs the question of what factors might have been in play. For example,
your agents might arrive in France before China, despite ample evidence
that the contrary occurred in the Pleistocene. This could be because of dif-
ferences in population growth rates or carrying capacity, asY&B suggested,
or it could be due to competition from Neanderthals. These and other op-
tions can be tested and compared against each other by extending the simu-
lation further. These kinds of considerations can also nudge the researcher
to return to the archaeological record and explore its possible biases and
gaps. Do some geographical areas show particularly poor fit to the simula-
tion? Have they been extensively studied, or is it likely that traces of the
dispersal are underreported there?

“All models are
wrong, but some

are useful.”
– G. Box (1979)

Models are not static end products in the research process but part of
the cumulative understanding we are building about the past at both theo-
retical and empirical levels (Hesse 1978; Dunnell 1982; Neiman 1995). Mod-
els will not prove your hypothesis to be “true” with perfect certainty. A
common saying in modeling, attributed to statistician George Box (1979),
is that “all models are wrong, but some are useful.” In other words, while
you’re unlikely to replicate the exact timings of dispersal across the world,
the model will provide insight into what is and is not a likely factor driv-
ing dispersal. Even better if a model, built according to a common narrative
explanation, is completelywrong andwemust change our ownunderstand-
ing.

Finally, it is worth reflecting on the technical side of things. If, prior
to reading this chapter, you had never seen a line of code and the whole
programming enterprise felt daunting, take a moment to contemplate the

40

Chapter 1: Building an Agent-Based Model

fact that, after only a couple hours of basic training, you were able to repli-
cate a published scientific study. It truly is not rocket science (even if rocket
scientists build models, too). E

End-of-Chapter Exercises
1. Change the other basic agent characteristics: size and shape .

2. Add a second population of turtles spreading from easternAsia. Give
each population its own fixed color .

3. Add an initial-pop-size slider.Modify the setup code to use
this to vary the size of the original population. Also adjust the code
so that these initial agents must be created on empty patches only.

4. First, add more population dynamics by adding age and death after
a certain age. Second, add probability of death (which is similar to
reproduction-probability). Define this probability as a function of
age, so that the older a turtle gets, the higher its probability of dying.

5. Y&B use a variable carrying capacity to affect the dispersal character-
istics. First, give all patches a variable called carrying-capacity
(check patches-own in theNetLogoDictionary). For land patches,
set it to 1, and for water patches set it to 0. Modify the reproduc-
tion procedure to only allow turtles to hatch onto patches where
carrying-capacity is greater than the count of turtles on that
patch. Second, followY&B in setting carrying-capacity higher
for patches below 30° of latitude, which corresponds on our map to
pycor 307 . Does this make any difference to the dispersal rate?

Further Reading
▷ A. J. Ammerman andL. L. Cavalli-Sforza. 1973. “APopulationModel

for the Diffusion of Early Farming in Europe.” In The Explanation
of Culture Change: Models in Prehistory, edited by C. Renfrew, 343–
358. London, UK: Duckworth.

▷ J. Fort. 2018. “The Neolithic Transition: Diffusion of People or Dif-
fusion ofCulture?” InDiffusive Spreading inNature, Technoloॽ and

41

P A R T I : L E A R N I N G T O W A L K

Society, 313–331. Cham, Switzerland: Springer. doi:10.1007/978-3-319-
67798-9_16

▷ S. J. Mithen and M. Reed. 2002. “Stepping Out: A Computer Simu-
lation of Hominid Dispersal fromAfrica.” Journal of Human Evolu-
tion 43 (4): 433–462. doi:10.1006/jhev.2002.0584

▷ R. L. Bettinger and D. A. Young. 2004. “Hunter-Gatherer Popu-
lation Expansion in North Asia and the New World.” In Entering
America: Northeast Asia and Beringia Before the Last GlacialMaxi-
mum, edited byD. B.Madsen. Salt Lake City, UT:University ofUtah
Press, September.

▷ P. Riris. 2018. “Assessing the Impact and Legacy of Swidden Farm-
ing in Neotropical Interfluvial Environments through Exploratory
Modelling of Post-Contact Piaroa Land Use (Upper Orinoco,
Venezuela).” The Holocene 28, no. 6 (June): 945–954. doi:10 . 1177/
0959683617752857

▷ I. Romanowska. 2015b. “So You Think You Can Model? A Guide to
Building and Evaluating Archaeological Simulation Models of Dis-
persals.” Human Bioloॽ 87 (3): 169–192. doi:10.13110/humanbiology.
87.3.0169

▷ J. Steele. 2009. “Human Dispersals: Mathematical Models and the
Archaeological Record.”Human Bioloॽ 81 (2-3): 121–140. doi:10.337
8/027.081.0302.

▷ U. Wilensky and W. Rand. 2015. An Introduction to Agent-Based
Modeling: Modeling Natural, Social, and Engineered Complex Sys-
tems with NetLogo. Cambridge, MA: MIT Press, April.

▷ D. A. Young and R. L. Bettinger. 1992. “The Numic Spread: A Com-
puter Simulation.” American Antiquity 57 (1): 85–99. doi:10.2307/
2694836.

▷ D. A. Young and R. L. Bettinger. 1995. “Simulating the Global Hu-
man Expansion in the Late Pleistocene.” Journal of Archaeological
Science 22 (1): 89–92. doi:10.1016/S0305-4403(95)80165-0

42

http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1006/jhev.2002.0584
http://dx.doi.org/10.1177/0959683617752857
http://dx.doi.org/10.1177/0959683617752857
http://dx.doi.org/10.13110/humanbiology.87.3.0169
http://dx.doi.org/10.13110/humanbiology.87.3.0169
http://dx.doi.org/10.3378/027.081.0302
http://dx.doi.org/10.3378/027.081.0302
http://dx.doi.org/10.2307/2694836
http://dx.doi.org/10.2307/2694836
http://dx.doi.org/10.1016/S0305-4403(95)80165-0

NOTES

	0: The Art & Science of Building Societies in Silico
	The Foundational Steps of Building an Agent-Based Model
	Trading up to Complex Models of Economic Interactions
	Reaping the Rewards: Addressing Archaeological Questions
	Mobility Algorithms: How Does Movement Leave Its Mark?
	Exchange Algorithms: How Do People Trade in Goods, Ideas, and Pathogens?
	Subsistence Algorithms: Why Do Some Societies Thrive while Others Fade?
	Modeling with Spatial Data: Bringing the GIS World to ABM
	Modeling with Relational Data: Relationships and Exchange using Network Science
	Data Analysis: Leveraging Data Science to Explore ABM Results
	Conclusion
	Glossary
	Model Zoo
	Making Colorblind-Friendly ABMs
	Index

